A Case Study from Barrier Volcanic Complex, Kenya

Total Page:16

File Type:pdf, Size:1020Kb

A Case Study from Barrier Volcanic Complex, Kenya GRC Transactions, Vol. 42, 2018 Early Stage 3D Model Construction for Well Planning: A Case Study from Barrier Volcanic Complex, Kenya. Abraham., S1, Kimani., F1, Njau, K1, Baxter., C2, O’Brien., J3 1Olsuswa Energy, Mayfox House, P.O Box 14991 – 00800, Garden Road off Riverside Drive, Nairobi, Kenya 2Seequent UK Limited, Building 1, Chalfont Park, Gerrard’s Cross, Buckinghamshire SL9 0BG, United Kingdom 3Seequent Limited, 20 Moorhouse Ave, Addington, Christchurch 8011, New Zealand Keywords Leapfrog, Olsuswa Energy, Barrier Volcanic Complex, Conceptual Model, Well. ABSTRACT Integration of surface data and inferred subsurface structure is a crucial part of geothermal resource delineation prior to beginning drilling campaigns. Inputs at this stage often include geological maps and cross sections, geochemical data, lidar or land survey data, and geophysical data. The integration of this early information informs the conceptual model and therefor drilling targets. Often this process is completed in a 2D environment where sometimes spatial context can be left behind. This paper highlights how incorporating surface exploration data into a 3D environment at the earliest stage can shed light on resource uncertainty and key features at the Barrier Volcanic Complex in Kenya. The Barrier Volcanic Complex (BVC) is a shield volcano located in Turkana, Kenya. The volcano Last erupted in 1921 and is the northernmost geothermal prospect in Kenya, lying in the Gregory Rift Valley at 2° 20’N, 36° 37’E. The volcanic complex forms a natural dam between Lake Turkana and the Suguta Valley. North to South topographic profiles indicate that this 20km long and 15 km wide, E-W trending ridge is a broad symmetrical feature with gently sloping flanks. BVC is a composite structure composed of four distinct volcanic centers namely; Likaiu East, Likaiu West, Kakorinya, and Kang’olenyang’. In the build up to the 3D and spatial integration processes, Olsuswa utilised data from earlier geoscientific works by the British Geological Survey (BGS) and Kenya’s Geothermal Development Company (GDC). This was in addition to data from Olsuswa’s detailed surface exploration program. A three dimensional representation of the system has helped with Abraham et al. communicating with stakeholders and delineating key subsurface elements key to planning the initial exploration drilling strategy. 1. Introduction The Barrier Volcanic Complex is located in Turkana, Kenya and lies in the Gregory Rift Valley at 2° 20’N, 36° 37’E (Figure 1). Barrier volcanic complex is the northernmost geothermal prospect in Kenya at the southern shores of Lake Turkana. It is a complex composite of four volcanoes, namely; Kakorinya, Kang’olenyang’, Likaiu West and Likaiu East. Figure 1: Map showing the location of the Barrier Geothermal Field. Except in Kakorinya’s main caldera formation where pyroclastic deposits constitute the youngest rock types, a suite of basalt, hawaiite, mugearite, and trachyte lava flows constitute the recent lithologic formations in the other three volcanic centers. The project site covers the central area of the BVC surrounding the Kakorinya volcano. This area is transacted by a series of curvilinear N-NE trending normal faults which extend in an en echelon right-stepping fashion across the volcano. Geothermal surface manifestations in the complex are fumaroles, hydrothermally altered grounds, hot springs, silica sinter, and geothermal grass. Estimated gas geothermometry temperatures have given mean subsurface temperatures of > 281°C. Abraham et al. This paper aims to investigate how incorporating surface exploration data into a 3D environment at an early stage. Historically collected data by BGS and GDC as well as local understanding of the area were used to infer the sub surface lithological 3D model in Leapfrog Geothermal. The model has helped delineating key subsurface elements key to planning the initial exploration drilling strategy. 2. Geothermal System in BVC Field 2.1 Geological Setting The geology of the BVC complex is comprised of a wide spectrum of lava types including basanite, basalt, hawaiite, mugearite, benmorite, trachyte and phonolite. Trachytic pyroclastic deposits cover much of the western slopes of Kakorinya and the summit area of Likaiu West. The oldest exposed rocks of the BVC are massively faulted porphyritic olivine basalts. These Pliocene foundation rocks were dated at about 4.53 Ma (Dunkley et al, 1993) and are well exposed in the adjacent rift margins. They cover most of the east and are called the Parkati Basalts. They occur in the faulted ground far east of Lake Logipi and around Latar, Southeast of Lake Turkana. The oldest lavas on the west are Lotikipi Basalts dated to be between 4.0-1.86Ma, (Dunkley et al, 1993). As observed by Dunkley et al. (1993), trachytic volcanism constructed the centres of Kang’olenyang’ and Likaiu East and major trachytes lavas are exposed within the inner trough. The youngest trachytes form the domes to the west of Kakorinya caldera around the caldera rim and these trachytes are dated to be about 0.05 Ma (Dunkley et al, 1993). Upper trachytes of 0.09 Ma (Dunkley et al, 1993) are exposed in the east of the caldera running in a N-S direction, with a minor outcrop of this formation being noted in the north west with a strip in the southwest. Older trachytes are exposed closer to the flanks in the east and are dated to be about 1.37 Ma (Dunkley et al, 1993). Pyroclastics cover most parts of the western side of Kakorinya while spots of alluvial sediments are scattered within this area. Some alluvials are found on top of cones inferring that the lake levels were much higher than they are at present. The youngest pyroclastic deposits on Kakorinya are airfall pumice lapilli and are best exposed in a thick wedge, which infills the western dipping slope between the caldera rim and the outer ring fractures. These deposits bank against and mantle the ring fracture escarpments and the pre-caldera domes. They are cut by the caldera wall in the west and bury the northern wall. This relationship indicates that the eruption of these trachytic tuff was broadly contemporaneous with the caldera collapse. Lacustrine sediments provide evidence of the existence of former Lake Suguta, which infilled the inner trough northwards from Emuruangogolak. The latest eruption in the area is historic and occurred in 1921. The erupted material was scoria basalts of Teleki Cone, which is still fresh and unvegetated (Figure 2). Abraham et al. Figure 2: Geological map of the Barrier Volcanic Complex and adjacent areas. 2.2 Structural Setting Studies of the structural setting of the Barrier volcanic field and associated Kakorinya volcano were presented by Dunkley et al. (1993). These structures are part of the rift floor structural system. Structurally, the BVC is characterized by faults, steep ridges and four eruption centres. The general trend of the faults in the area are N-S and NNE-SSW, which is consistent with the regional stress of the area. The mostly faulted areas are to the east, from the south eastern tip of Lake Turkana where dense faults trending NNE-SSW intersect with the eastern rim of Kakorinya Caldera. Southeast of the rim, the faulting takes a sudden turn to the south. The western half of the complex is less intensely faulted, with the faults trending NNE-SSW just southwest of Kakorinya and NNW- SSE around Kang’olenyang’ volcano. Abraham et al. The heat source is postulated to be bound by the caldera system at Kakorinya. This is further supported by the higher frequency of surface manifestations around this caldera than around the other three volcanic centres within the area. 2.3 Surface Manifestations Dunkley et al. (1993) delineated the thermal manifestations in the area. They include hotsprings, fumaroles, altered grounds, silica sinters and Fimbristylis exilis (“Geothermal grass”). Geothermal manifestations generally occur along a series of NNE-trending faults and fissures on the caldera floor and also around the caldera walls in the east and southeast (Figure 3). The hottest and most vigorous activity is associated with the caldera ring fractures and trachytic lava domes in the west of the caldera. The maximum recorded fumarole temperature is 96.4°C and occurs within the caldera floor (GDC, 2011). Outside the caldera there are a few fumaroles which exhibit low temperatures of up to 78.2°C (GDC, 2011). Hot springs frequently occur along the northern shores of Lake Logipi and around the eroded tuff cone of Naperito, although some of the hot springs occur under the lake (Figure 3). A maximum temperature of 70.0°C has been recorded for the hot springs (Dunkley et al, 1993). Silica sinters are common at many of the geothermal areas on Kakorinya and indicates former hot spring activity. The most spectacular development of sinter occurs on the trachyte lava domes cut by southwest wall of the caldera. They have sub-vertical dips, strike 008-028° and are parallel to a series of open fissures and faults. The veins extend up to the top surface of the lava domes where mounds of botryoidally sinter occur. Outside the caldera chalcedonic silica veins occur at several localities where the ring fracture meets a northeast-trending fault at weak fumaroles and steaming ground. Thermal indicators extracted from remote sensing data inform the PC4 image indicate the presence of hydrothermal alteration minerals southeast of Kakorinya caldera and in the Kang’olenyang’ area (Mutua et al. 2011). Thermal infrared imagery also shows thermal areas within Kakorinya area. 3. Historical Work Two historical studies have been used by Olsuswa to define the conceptual model and delineate the investigatory area. The BGS in 1993 conducted reconnaissance surveys which revealed the occurrence of strong surface manifestations. Subsequently during 2011, GDC carried out a preliminary reconnaissance surface exploration studies to establish the geothermal potential of the prospect (GDC, 2011).
Recommended publications
  • Tectonic and Climatic Control on Evolution of Rift Lakes in the Central Kenya Rift, East Africa
    Quaternary Science Reviews 28 (2009) 2804–2816 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa A.G.N. Bergner a,*, M.R. Strecker a, M.H. Trauth a, A. Deino b, F. Gasse c, P. Blisniuk d,M.Du¨ hnforth e a Institut fu¨r Geowissenschaften, Universita¨t Potsdam, K.-Liebknecht-Sr. 24-25, 14476 Potsdam, Germany b Berkeley Geochronology Center, Berkeley, USA c Centre Europe´en de Recherche et d’Enseignement de Ge´osciences de l’Environement (CEREGE), Aix en Provence, France d School of Earth Sciences, Stanford University, Stanford, USA e Institute of Arctic and Alpine Research, University of Colorado, Boulder, USA article info abstract Article history: The long-term histories of the neighboring Nakuru–Elmenteita and Naivasha lake basins in the Central Received 29 June 2007 Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and Received in revised form the formation of disparate sedimentary environments. Although modern climate conditions in the 26 June 2009 Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Accepted 9 July 2009 Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen 14Cand40Ar/39Ar dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recor- ded in these basins based on fossil diatom assemblages and geologic field mapping.
    [Show full text]
  • Short-Lived Increase in Erosion During the African Humid Period: Evidence from the Northern Kenya Rift ∗ Yannick Garcin A, , Taylor F
    Earth and Planetary Science Letters 459 (2017) 58–69 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift ∗ Yannick Garcin a, , Taylor F. Schildgen a,b, Verónica Torres Acosta a, Daniel Melnick a,c, Julien Guillemoteau a, Jane Willenbring b,d, Manfred R. Strecker a a Institut für Erd- und Umweltwissenschaften, Universität Potsdam, Germany b Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Telegrafenberg Potsdam, Germany c Instituto de Ciencias de la Tierra, Universidad Austral de Chile, Casilla 567, Valdivia, Chile d Scripps Institution of Oceanography – Earth Division, University of California, San Diego, La Jolla, USA a r t i c l e i n f o a b s t r a c t Article history: The African Humid Period (AHP) between ∼15 and 5.5 cal. kyr BP caused major environmental change Received 2 June 2016 in East Africa, including filling of the Suguta Valley in the northern Kenya Rift with an extensive Received in revised form 4 November 2016 (∼2150 km2), deep (∼300 m) lake. Interfingering fluvio-lacustrine deposits of the Baragoi paleo-delta Accepted 8 November 2016 provide insights into the lake-level history and how erosion rates changed during this time, as revealed Available online 30 November 2016 by delta-volume estimates and the concentration of cosmogenic 10Be in fluvial sand. Erosion rates derived Editor: A. Yin −1 10 from delta-volume estimates range from 0.019 to 0.03 mm yr . Be-derived paleo-erosion rates at −1 Keywords: ∼11.8 cal.
    [Show full text]
  • George Muia the “Turkana Grits”: Potential Hydrocarbon Reservoirs
    THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Sciences de la Terre Ecole Doctorale Sciences de la Matière présentée par George Muia Préparée à l’unité de recherche UMR 6118 Géosciences Rennes Observatoire des Sciences de l’Univers de Rennes Thèse soutenue à Rennes The “Turkana Grits”: le 24/07/2015 Potential Hydrocarbon devant le jury composé de : Jean-Luc POTDEVIN Reservoirs Professeur, Université de Lille 1 / rapporteur of the Northern Stéphane DUCROCQ Directeur de Recherche, and Central Kenya Rifts CNRS-Université de Poitiers / rapporteur Jean-Yves REYNAUD Professeur, Université de Lille 1 / examinateur Mathieu SCHUSTER Chargé de Recherche, CNRS Université de Strasbourg / examinateur Peter R. COBBOLD Directeur de Recherche Emérite, CNRS Université de Rennes 1/ examinateur Jean-Jacques TIERCELIN Directeur de Recherche, CNRS-Université de Rennes 1 / directeur de thèse Erwan HALLOT Maître de Conférences Université de Rennes 1 / co-directeur de thèse The “Turkana Grits”: Potential Hydrocarbon Reservoirs of the Northern and Central Kenya Rifts 3 Table of contents Acknowledgements 6 Abstract 8 General Introduction 9 Chapter I 21 1. Introduction 30 2. Field study, sampling and analytical methods 35 3. Regional background of the Central and Northern Kenya Rifts 37 3.1. Physiography and climate of the Central and Northern Kenya Rifts 37 3.2. Geological outline of the Kerio and Baringo Basins 40 3.3. Geological outline of the North Kerio Basin 43 4. The Kimwarer Formation 45 4.1. Lithostratigraphy 45 4.1.1. The “Lower Kimwarer Formation” 47 4.1.2.
    [Show full text]
  • The First Humans - Origin and Early Evolution of the Genus Homo
    The First Humans - Origin and Early Evolution of the Genus Homo _______________________________________________ Contributions from the Third Stony Brook Human Evolution Symposium and Workshop October 3 - October 7, 2006 _______________________________________________ Edited by Frederick E. Grine Departments of Anthropology and Anatomical Sciences Stony Brook University Stony Brook, NY 11794 USA John G. Fleagle Department of Anatomical Sciences Stony Brook University Stony Brook, NY 11794 USA Richard E. Leakey Department of Anthropology and Turkana Basin Institute Stony Brook University Stony Brook, NY 11794 USA GGrine_FM.inddrine_FM.indd iiiiii 44/17/2009/17/2009 99:55:31:55:31 AAMM Chapter 13 Plio-Pleistocene East African Pulsed Climate Variability and Its Influence on Early Human Evolution Mark A. Maslin and Martin H. Trauth Keywords East Africa • tectonics • regional climate • global East African Tectonic History climate • paleo-lakes • precessional forcing • pulsed climatic variability The East African Rift System (EARS) is one of the most extensive geological features on the Earth’s surface, running North-South for approximately 4,500 km from Syria through Introduction East Africa to Mozambique. Volcanism associated with the EARS began as early as 45–33 Ma in the Ethiopian Rift, by 33 Ma in northern Kenya, and by 15–8 Ma in the central and Long-term climate change seems to be modulated primarily southern segments of the rift in Kenya and Tanzania (Fig. 13.1). by tectonic changes at both the global and local scale (Maslin The early stages of rifting were characterized by updom- et al., 2001). Late Cenozoic global cooling has been ascribed ing and downwarping, while subsequent faulting progressed to both the uplift of Tibet (Ruddiman and Raymo, 1988), and from north to south (Fig.
    [Show full text]
  • Lake Turkana & Nabuyatom Crater
    L a k e Tu rk a n a Day trip by Helicopter - 2019 Suguta sand dunes © Sam Stogdale Highlights Suguta - Turkana - Mathews Low level over the wildlife rich landscapes of Laikipia Silali Crater ‘Hoodoo’ and ‘Painted’ valleys Suguta sand dunes Flamingo on the soda lake of Logipi Southern shores of Lake Turkana & Nabuyatom crater Cycad forests of the Mathews Range Ewaso Nyiro river and the savannah landscapes of Samburu Hoodoo Valley © Tullow Oil L a k e Tu rk a n a 6 hours From the wildlife plains of Laikipia, we head north west into the Gregory Rift. Our first stop is on the summit of Silale crater, and then we drop down into the Suguta Valley. The landscape is constantly changing - desolate salt plains, lava flows and crocodile pools, through the colourful ‘painted’ and ‘hoodoo’ valleys. We touch down on the sand dunes, fly over the soda lake of Logipi where flocks of flamingo paint the shores pink, and we finally arrive at the fresh waters of Lake Turkana. Besides Nabuyatom Crater we touch down for refreshments. We return following the most scenic route, over the Ndotos and Mathews - a dominant mountain range that rises from the arid plains, with mist forests and ancient cycads on its summit. Our final leg takes us low level over the savannahs of Samburu. Lake Turkana © Sam Stogdale Silali Crater, southern end of the Suguta Valley A vast caldera, carpeted by grasses and shrubs, located at the southern tip of the Suguta Valley. @ Michael Poliza Suguta Valley Geologists have long been fascinated with this part of the Great Rift Valley.
    [Show full text]
  • Onset of the African Humid Period by 13.9 Kyr BP at Kabua Gorge
    HOL0010.1177/0959683619831415The HoloceneBeck et al. 831415research-article2019 Research paper The Holocene 1 –9 Onset of the African Humid Period © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions by 13.9 kyr BP at Kabua Gorge, DOI:https://doi.org/10.1177/0959683619831415 10.1177/0959683619831415 Turkana Basin, Kenya journals.sagepub.com/home/hol Catherine C Beck,1 Craig S Feibel,2,3 James D Wright2 and Richard A Mortlock2 Abstract The shift toward wetter climatic conditions during the African Humid Period (AHP) transformed previously marginal habitats into environments conducive to human exploitation. The Turkana Basin provides critical evidence for a dynamic climate throughout the AHP (~15–5 kyr BP), as Lake Turkana rose ~100 m multiple times to overflow through an outlet to the Nile drainage system. New data from West Turkana outcrops of the late-Pleistocene to early- Holocene Galana Boi Formation complement and extend previously established lake-level curves. Three lacustrine highstand sequences, characterized by laminated silty clays with ostracods and molluscs, were identified and dated using AMS radiocarbon on molluscs and charcoal. This study records the earliest evidence from the Turkana Basin for the onset of AHP by at least 13.9 kyr BP. In addition, a depositional hiatus corresponds to the Younger Dryas (YD), reflecting the Turkana Basin’s response to global climatic forcing. The record from Kabua Gorge holds additional significance as it characterized the time period leading up to Holocene climatic stability. This study contributes to the paleoclimatic context of the AHP and YD during which significant human adaptation and cultural change occurred.
    [Show full text]
  • The Middle Stone Age of the Northern Kenyan Rift: Age and Context of New Archaeological Sites from the Kapedo Tuffs
    Journal of Human Evolution 55 (2008) 652–664 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol The Middle Stone Age of the northern Kenyan Rift: age and context of new archaeological sites from the Kapedo Tuffs Christian A. Tryon a,*, Neil T. Roach b, M. Amelia V. Logan c a Human Origins Program, Department of Anthropology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 112, Washington DC, 20013-7012, USA b Department of Anthropology, Harvard University, Cambridge MA, 02138, USA c Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 119, Washington DC, 20013-7012, USA article info abstract Article history: Rift Valley sites in southern Ethiopia and northern Kenya preserve the oldest fossil remains attributed to Received 22 June 2007 Homo sapiens and the earliest archaeological sites attributed to the Middle Stone Age (MSA). New Accepted 14 March 2008 localities from the Kapedo Tuffs augment the sparse sample of MSA sites from the northern Kenya Rift. Tephrostratigraphic correlation with dated pyroclastic deposits from the adjacent volcano Silali suggests an age range of 135–123 ka for archaeological sites of the Kapedo Tuffs. Comparisons of the Kapedo Tuffs Keywords: archaeological assemblages with those from the adjacent Turkana and Baringo basins show broad lithic Tephrostratigraphy technological similarity but reveal that stone raw material availability is a key factor in explaining Silali Lithic technology typologically defined archaeological variability within this region. Spatially and temporally resolved Regional variation comparisons such as this provide the best means to link the biological and behavioral variation manifest Middle-Late Pleistocene in the record of early Homo sapiens.
    [Show full text]
  • Evidence from the Northern Kenya Rift
    UC San Diego UC San Diego Previously Published Works Title Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift Permalink https://escholarship.org/uc/item/7nm9z13c Authors Garcin, Yannick Schildgen, Taylor F Acosta, Veronica Torres et al. Publication Date 2017-02-01 DOI 10.1016/j.epsl.2016.11.017 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Earth and Planetary Science Letters 459 (2017) 58–69 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift ∗ Yannick Garcin a, , Taylor F. Schildgen a,b, Verónica Torres Acosta a, Daniel Melnick a,c, Julien Guillemoteau a, Jane Willenbring b,d, Manfred R. Strecker a a Institut für Erd- und Umweltwissenschaften, Universität Potsdam, Germany b Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Telegrafenberg Potsdam, Germany c Instituto de Ciencias de la Tierra, Universidad Austral de Chile, Casilla 567, Valdivia, Chile d Scripps Institution of Oceanography – Earth Division, University of California, San Diego, La Jolla, USA a r t i c l e i n f o a b s t r a c t Article history: The African Humid Period (AHP) between ∼15 and 5.5 cal. kyr BP caused major environmental change Received 2 June 2016 in East Africa, including filling of the Suguta Valley in the northern Kenya Rift with an extensive Received in revised form 4 November 2016 (∼2150 km2), deep (∼300 m) lake. Interfingering fluvio-lacustrine deposits of the Baragoi paleo-delta Accepted 8 November 2016 provide insights into the lake-level history and how erosion rates changed during this time, as revealed Available online 30 November 2016 by delta-volume estimates and the concentration of cosmogenic 10Be in fluvial sand.
    [Show full text]
  • SURFACE at Syracuse University
    Syracuse University SURFACE Dissertations - ALL SURFACE June 2014 STRATIGRAPHIC FRAMEWORK AND QUATERNARY PALEOLIMNOLOGY OF THE LAKE TURKANA RIFT, KENYA Amy Morrissey Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Physical Sciences and Mathematics Commons Recommended Citation Morrissey, Amy, "STRATIGRAPHIC FRAMEWORK AND QUATERNARY PALEOLIMNOLOGY OF THE LAKE TURKANA RIFT, KENYA" (2014). Dissertations - ALL. 62. https://surface.syr.edu/etd/62 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Dissertation abstract Lake sediments are some of the best archives of continental climate change, particularly in the tropics. This study is focused on three ~10m sediment cores and high- resolution seismic reflection data from Lake Turkana in northern Kenya. Lake Turkana is the world’s largest desert lake and the largest lake in the Eastern Branch of the East African Rift System. It is situated at ~2 °N at 360 m elevation and is ~250 km long and ~30 km wide with a mean depth of 35 m. The lake surface receives less than 200 mm yr-1 of rainfall during the twice-annual passing of the Intertropical Convergence Zone via Indian Ocean- derived moisture, and evaporation is >2300 mm yr-1. This study is the first to quantify the climate and deepwater limnologic changes that have occurred in the area during the African Humid Period (AHP) and since the Last Glacial Maximum. A 20-kyr, multiproxy lake level history was derived from ~1100 km of CHIRP seismic reflection data, in conjunction with gamma ray bulk density, magnetic susceptibility, total organic carbon, total inorganic carbon, core lithology, and scanning XRF data from sediment cores that were chronologically constrained by radiocarbon dates.
    [Show full text]
  • Response of the East African Climate to Orbital Forcing During the Last Interglacial (130–117 Ka) and the Early Last Glacial (117–60 Ka)
    Response of the East African climate to orbital forcing during the last interglacial (130±117 ka) and the early last glacial (117±60 ka) Martin H. Trauth* Institut fuÈr Geowissenschaften, UniversitaÈt Potsdam, Postfach 601553, Potsdam, Germany Alan Deino Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, California 94709, USA Manfred R. Strecker Institut fuÈr Geowissenschaften, UniversitaÈt Potsdam, Postfach 601553, Potsdam, Germany ABSTRACT Variations in the temporal and spatial distribution of solar radiation caused by changes in Earth's orbit provide a partial explanation for observed long-term ¯uctuations in Af- rican lake levels. The understanding of causal links between insolation changes and lake- level ¯uctuations is essential for the design of models predicting future changes in the hydrological budgets and water supply in Africa. Here we present a record of climate change in East Africa between 175 and 60 ka. This time span includes the last interglacial (the Eemian, 130±117 ka), which may provide the closest analogue to the present inter- glacial. Assessments of the nature and timing of East African climate changes are based on lake-level ¯uctuations of Lake Naivasha (Kenya) inferred from sediment characteris- tics, diatom assemblages, and 40Ar/39Ar dating. Our results show dramatic alternation between deep, freshwater and shallow, highly alkaline lake conditions. The Lake Naivasha record demonstrates that periods of increased humidity in East Africa mainly follow pre- cessional insolation forcing in spring, causing more intense April±May rains every 23 k.y. Keywords: East Africa, lake sediments, Milankovitch, climate. INTRODUCTION forcing (Street and Grove, 1979; Gasse et al., vide a detailed chronology of lake-level Present African climate is mainly controlled 1989; Bonneville et al., 1990).
    [Show full text]
  • Revisiting Lake Garba Guracha, High Altitude Lake in the Bale Mountains
    © by authors. All rights reserved Revisiting Lake Garba Guracha, high altitude lake in the Bale Mountains, Ethiopia: reconstructing Late Glacial – Holocene lake level history using δ2H/δ18O biomarker analyses L. Bittner1,2, M. Bliedtner3, D. Grady4, G. Gil-Romera5,6, C. Martin-Jones7,8, B. Lemma2, H.F. Lamb4, C. De Jonge9, H. Meyer10, B. Glaser2, M. Zech1 1) Heisenberg Chair of Physical Geography with focus on paleoenvironmental research, Institute of Geography, Technical University of Dresden, Germany 2) Institute of Agronomy and Nutritional Sciences, Soil Biogeochemistry, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany Callejo - 3) Department of Physical Geography, Institute of Geography, Friedrich-Schiller-University Jena, Jena, Germany 4) Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, UK 5) Department of Geo-environmental Processes and Global Change, Pyrenean Institute of Ecology, CSIC, Zaragoza, Spain 6) Department of Ecology, Philipps-Marburg University, Marburg, Germany 7) Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK 8) Limnology Unit, Department of Biology, Ghent University, B-9000 Gent, Belgium 9) Geological Institute, Department of Earth Sciences, ETH Swiss Federal Institute of Technology, 8092 Zurich, Switzerland Made by Dr. Miguel Sevilla Miguel Dr. by Made 10) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg A45, Potsdam, Germany Introduction Discussion The climate of East Africa is driven by the position of the Intertropical Convergence Zone (ITCZ). The intensity and Bittner et al. submitted (JOPL)) position of the ITCZ related tropical rain belt changes depending on the interhemispheric temperature gradient (Broccoli et al., 2006). During the early Holocene boreal summer insolation maximum, the mean position of the tropical rain belt shifted north leading to increased precipitation across northern Africa (Gasse, 2000).
    [Show full text]
  • Castañeda, IS, Schouten, S., Paetzold, J., Lucassen, F
    This is a postprint of: Castañeda, I.S., Schouten, S., Paetzold, J., Lucassen, F., Kasemann, S., Kuhlmann, H. & Schefuß, E. (2016). Hydroclimate variability in the Nile River Basin during the past 28,000 years. Earth and Planetary Science Letters, 438, 47-56 Published version: dx.doi.org/10.1016/j.epsl.2015.12.014 Link NIOZ Repository: www.vliz.be/en/imis?module=ref&refid=254286 [Article begins on next page] The NIOZ Repository gives free access to the digital collection of the work of the Royal Netherlands Institute for Sea Research. This archive is managed according to the principles of the Open Access Movement, and the Open Archive Initiative. Each publication should be cited to its original source - please use the reference as presented. When using parts of, or whole publications in your own work, permission from the author(s) or copyright holder(s) is always needed. 1 Hydroclimate variability in the Nile River Basin during the 2 past 28,000 years 3 Isla S. Castañedaa,b,1, Stefan Schoutena, Jürgen Pätzoldc, Friedrich 4 Lucassenc,d, Simone Kasemannc,d, Holger Kuhlmannd, Enno Schefußd 5 aDepartment of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for 6 Sea Research, PO Box 59, 1790 AB Den Burg, Netherlands 7 bDepartment of Geosciences, University of Massachusetts Amherst, 233 Morrill Science 8 Center, 611 North Pleasant St., Amherst, MA 01002, USA 9 cFaculty of Geosciences, University of Bremen, Klagenfurter Strasse, 28359 Bremen, 10 Germany 11 dMARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359, 12 Bremen, Germany 13 Abstract 14 It has long been known that extreme changes in North African hydroclimate occurred 15 during the late Pleistocene yet many discrepancies exist between sites regarding the timing, 16 duration and abruptness of events such as Heinrich Stadial (HS) 1 and the African Humid 17 Period (AHP).
    [Show full text]