MAXIMAL SUBGROUPS of a GIVEN GROUP Suppose That G Contains

Total Page:16

File Type:pdf, Size:1020Kb

MAXIMAL SUBGROUPS of a GIVEN GROUP Suppose That G Contains 68 MA THEMA TICS: G. A. MILLER PROC. N. A. S. MAXIMAL SUBGROUPS OF A GIVEN GROUP BY G. A. MILLER DEPARTMENT OF MATHEMATICS, UNIVERSrTY OF ILLINOIS Communicated December 13, 1940 A maximal subgroup of a given group G is a proper subgroup of G, that is, a subgroup which is neither the identity nor G itself,' and in order to be maximal it cannot be contained in a larger proper subgroup of G. When every proper subgroup of G is maximal then every proper subgroup of G is also minimal, that is, it is of prime order, and vice versa, when every proper subgroup of G is minimal then every proper subgroup of G is also maximal. In each of these two cases G is one of the two possible groups of order p2, p being a prime number, one of the two possible groups of order pq, p and q being distinct prime numbers such that p - 1 is divisible by q, or G is the cyclic group of order pq where p - 1 is not divisible by q and q - 1 is not divisible by p. If the order of a group is divisible by more than two prime numbers, equal or unequal, it is not possible for all of its proper subgroups to be either maximal or minimal since the Sylow subgroups could obviously not then be maximal when all of these prime numbers are distinct. Suppose that G contains one and only one maximal subgroup. This subgroup must then be invariant and it must be generated by every operator of G which does not appear in it since every operator of G appears in at least one maximal subgroup of G. The cyclic group of order pm, p being an arbitrary prime number and m > 1, is the only group which contains one and only one maximal subgroup. The determination of the maximal subgroups of the groups of order pm is clearly equivalent to the determina- tion of its subgroups of index p. In particular, the cross-cut of all such maximal subgroups is the 4-subgroup of the group and every non-cyclic group of order pm contains at least p + 1 maximal subgroups. There is one and only one abelian group of order pm which contains exactly p + 1 maximal subgroups and involves operators of order pm - 1, and when m > 1 there is also one and only one such non-abelian group, except when m = 3 and p = 2. In this special case there are two such non-abelian groups. Let G be an abelian group which contains two and only two maximal subgroups. It was noted above that the order of G is then divisible by at least two distinct prime numbers and it can obviously not be divisible by more than two distinct prime numbers. Moreover, its two Sylow subgroups must be cyclic and it is the direct product of its two Sylow sub- groups. Its +-subgroup is the direct product of the subgroups of prime index in its Sylow subgroups. It was noted above that when these Sylow subgroups are of prime order then every maximal subgroup of G is also a Downloaded by guest on October 2, 2021 VOL. 27, 1941 MA THEMA TICS: G. A. MILLER 69 minimal subgroup of G. In this special case the 4-subgroup of G is the identity, and the +-subgroup of G is always the cross-cut of its two maximal subgroups; this cross-cut is composed of all the operators of G whose orders are not divisible by at least one of the largest powers of the prime numbers which divide the order of G. If any given group G contains two and only two maximal subgroups, each of them is invariant under G because an operator of one of these two subgroups could not transform the other into the one which contains this operator. The index of each of these subgroups under G is a prime number and their cross-cut is an invariant subgroup of G. The corre- sponding quotient group contains two and only two proper subgroups and hence it is the cyclic group of order pq, p and q being distinct prime numr bers. One of the two given maximal subgroups therefore contains a Sylow subgroup whose order is a power of p while the other contains a Sylow subgroup whose order is a power of q. Each of these two Sylow subgroups is invariant under G since the quotient group of G with respect to the given invariant cross-cut contains only one subgroup of order p and also only one subgroup of order q. As the Sylow subgroups of G whose orders are powers of p are conjugate under the given maximal subgroup of index q as well as under G, each of these Sylow subgroups is invariant under an operator whose order is a power of q contained in G. Similar remarks apply to the Sylow subgroups whose orders are powers of q which appear in one of the given maximal subgroups. Moreover, there can be only one such Sylow subgroup in each case since the quotient group with respect to the given cross-cut is the cyclic group of order pq. It therefore results that G contains the direct product of these two Sylow subgroups since they are both invariant and have only the identity in common. As G is assumed to contain two and only two maximal subgroups it has been proved that the abelian groups which are the direct products of two prime power cyclic groups whose orders are powers of distinct prime numbers are the only groups which separately contain two and only two maximal subgroups. It has now been proved that whenever a group contains either exactly one maximal subgroup or exactly two maximal subgroups it must be abelian. When it contains exactly three maximal subgroups it is not necessarily abelian as results from the octic and the quaternion groups. Maximal subgroups constitute an important part in the theory of permuta- tion groups in view of the fact that a necessary and sufficient condition that a transitive permutation group of degree n is primitive is that the subgroup composed of all its permutations which omit a given letter is maximal, and vice versa. In particular, every symmetric group of degree n > 2 is primitive and every such alternating group is also primitive. It is therefore possible to find at least two distinct groups of every degree Downloaded by guest on October 2, 2021 70 MA THEMA TICS: G. A. MILLER PROC. N. A. S. n > 3 which separately contain at least n maximal subgroups and are non- abelian. Suppose that the group G contains exactly three maximal subgroups and that not all of them are invariant under G. They could not form a simple set of conjugates because they would then be transformed under G according to a permutation group of degree 3. This could not be the cyclic group of degree 3 because the three maximal subgroups could not be transformed cyclically by one of them. It could not be the symmetric group of degree 3 because this contains four maximal subgroups. It would not be possible for one of the three maximal subgroups to be in- variant under G and the other two to be conjugate under G since the operators which are not common to these two conjugate subgroups would have to transform the remaining operators of the other among themselves. Hence it results that when G contains exactly three maximal subgroups they are all invariant under G. It was noted above that every abelian group of order 2' which has exactly two independent generators has also exactly three maximal subgroups and that these are the only abelian groups of order 2' which separately have exactly three maximal subgroups. An infinite system of non- abelian groups of order 2' which separately contain three and only three maximal subgroups was also noted above. The group of lowest order which contains three and only three maximal subgroups is the four-group, which also contains three minimal subgroups. While the maximal sub- groups are of considerable interest the minimal subgroups are so very simple that it is somewhat questionable whether a special term should be used for them since the term groups of prime order is sufficiently descriptive. If G is the group of order pm, m > 2, which is obtained by extending the cyclic group of order pm - 1by an operator of order p which is commutative with the operators of its subgroup of index p but with no other operator of this subgroup of order pm - ' then G is non-abelian. When p > 2 it is conformal with the abelian group of type 1, m - 1, and this is also the case when p = 2 and m > 3. When p = 2 and m = 3 it is either the octic group or the quaternion group. In all cases when m > 2 it contains exactly p + 1 maximal subgroups and hence it contains exactly three such sub- groups when p = 2. Each of these subgroups is abelian and when m > 3 two of them are cyclic while the third is non-cyclic. Another infinite system of groups composed of groups which separately have exactly three maximal subgroups is composed of the cyclic groups whose orders are the products of the powers of three distinct prime numbers. When the order of G is not divisible by three distinct prime numbers then this order is of the form 2"' since it must then be generated by two of the three invariant maximal subgroups and the quotient group with respect to their cross-cut is then the four group.
Recommended publications
  • ON the SHELLABILITY of the ORDER COMPLEX of the SUBGROUP LATTICE of a FINITE GROUP 1. Introduction We Will Show That the Order C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 7, Pages 2689{2703 S 0002-9947(01)02730-1 Article electronically published on March 12, 2001 ON THE SHELLABILITY OF THE ORDER COMPLEX OF THE SUBGROUP LATTICE OF A FINITE GROUP JOHN SHARESHIAN Abstract. We show that the order complex of the subgroup lattice of a finite group G is nonpure shellable if and only if G is solvable. A by-product of the proof that nonsolvable groups do not have shellable subgroup lattices is the determination of the homotopy types of the order complexes of the subgroup lattices of many minimal simple groups. 1. Introduction We will show that the order complex of the subgroup lattice of a finite group G is (nonpure) shellable if and only if G is solvable. The proof of nonshellability in the nonsolvable case involves the determination of the homotopy type of the order complexes of the subgroup lattices of many minimal simple groups. We begin with some history and basic definitions. It is assumed that the reader is familiar with some of the rudiments of algebraic topology and finite group theory. No distinction will be made between an abstract simplicial complex ∆ and an arbitrary geometric realization of ∆. Maximal faces of a simplicial complex ∆ will be called facets of ∆. Definition 1.1. A simplicial complex ∆ is shellable if the facets of ∆ can be ordered σ1;::: ,σn so that for all 1 ≤ i<k≤ n thereexistssome1≤ j<kand x 2 σk such that σi \ σk ⊆ σj \ σk = σk nfxg. The list σ1;::: ,σn is called a shelling of ∆.
    [Show full text]
  • ON the INTERSECTION NUMBER of FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-14-2019 ON THE INTERSECTION NUMBER OF FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons Recommended Citation Bautista Serrano, Humberto, "ON THE INTERSECTION NUMBER OF FINITE GROUPS" (2019). Math Theses. Paper 9. http://hdl.handle.net/10950/1332 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. ON THE INTERSECTION NUMBER OF FINITE GROUPS by HUMBERTO BAUTISTA SERRANO A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics Kassie Archer, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler April 2019 c Copyright by Humberto Bautista Serrano 2019 All rights reserved Acknowledgments Foremost I would like to express my gratitude to my two excellent advisors, Dr. Kassie Archer at UT Tyler and Dr. Lindsey-Kay Lauderdale at Towson University. This thesis would never have been possible without their support, encouragement, and patience. I will always be thankful to them for introducing me to research in mathematics. I would also like to thank the reviewers, Dr. Scott LaLonde and Dr. David Milan for pointing to several mistakes and omissions and enormously improving the final version of this thesis.
    [Show full text]
  • (Hereditarily) Just Infinite Property in Profinite Groups
    Inverse system characterizations of the (hereditarily) just infinite property in profinite groups Colin D. Reid October 6, 2018 Abstract We give criteria on an inverse system of finite groups that ensure the limit is just infinite or hereditarily just infinite. More significantly, these criteria are ‘universal’ in that all (hereditarily) just infinite profinite groups arise as limits of the specified form. This is a corrected and revised version of [8]. 1 Introduction Notation. In this paper, all groups will be profinite groups, all homomorphisms are required to be continuous, and all subgroups are required to be closed; in particular, all references to commutator subgroups are understood to mean the closures of the corresponding abstractly defined subgroups. For an inverse system Λ= {(Gn)n>0, ρn : Gn+1 ։ Gn} of finite groups, we require all the homomorphisms ρn to be surjective. A subscript o will be used to indicate open inclusion, for instance A ≤o B means that A is an open subgroup of B. We use ‘pronilpotent’ and ‘prosoluble’ to mean a group that is the inverse limit of finite nilpotent groups or finite soluble groups respectively, and ‘G-invariant subgroup of H’ to mean a subgroup of H normalized by G. A profinite group G is just infinite if it is infinite, and every nontrivial normal subgroup of G is of finite index; it is hereditarily just infinite if in addition every arXiv:1708.08301v1 [math.GR] 28 Aug 2017 open subgroup of G is just infinite. At first sight the just infinite property is a qualitative one, like that of simplicity: either a group has nontrivial normal subgroups of infinite index, or it does not.
    [Show full text]
  • Arxiv:1509.08090V1 [Math.GR]
    THE CLASS MN OF GROUPS IN WHICH ALL MAXIMAL SUBGROUPS ARE NORMAL AGLAIA MYROPOLSKA Abstract. We investigate the class MN of groups with the property that all maximal subgroups are normal. The class MN appeared in the framework of the study of potential counter-examples to the Andrews-Curtis conjecture. In this note we give various structural properties of groups in MN and present examples of groups in MN and not in MN . 1. Introduction The class MN was introduced in [Myr13] as the class of groups with the property that all maximal subgroups are normal. The study of MN was motivated by the analysis of potential counter-examples to the Andrews-Curtis conjecture [AC65]. It was shown in [Myr13] that a finitely generated group G in the class MN satisfies the so-called “generalised Andrews- Curtis conjecture” (see [BLM05] for the precise definition) and thus cannot confirm potential counter-examples to the original conjecture. Apart from its relation to the Andrews-Curtis conjecutre, the study of the class MN can be interesting on its own. Observe that if a group G belongs to MN then all maximal subgroups of G are of finite index. The latter group property has been considered in the literature for different classes of groups. For instance in the linear setting, Margulis and Soifer [MS81] showed that all maximal subgroups of a finitely generated linear group G are of finite index if and only if G is virtually solvable. The above property also was considered for branch groups, however the results in this direction are partial and far from being as general as for linear groups.
    [Show full text]
  • Math 602 Assignment 1, Fall 2020 Part A
    Math 602 Assignment 1, Fall 2020 Part A. From Gallier{Shatz: Problems 1, 2, 6, 9. Part B. Definition Suppose a group G operates transitively on the left of a set X. (i) We say that the action (G; X) is imprimitive if there exists a non-trivial partition Q of X which is stable under G. Here \non-trivial" means that Q 6= fXg and Q 6= ffxg : x 2 Xg : Such a partition Q will be called a system of imprimitivity for (G; X). (ii) We say that the action (G; X) is primitive if it is not imprimitive. 1. (a) Suppose that (G; X; Q) is a system of imprimitivity for a transitive left action (G; X), Y 2 Q, y 2 Y . Let H = StabG(Y ), K = StabG(y). Prove the following statements. • K < H < G and H operates transitively on Y . • jXj = jY j · jQj, jQj = [G : H], jY j = [H : K]. (These statements hold even if X is infinite.) (b) Suppose that (G; X) is a transitive left action, y 2 X, K := StabG(y), and H is a subgroup of G such that K < H < G. Let Y := H · y ⊂ X, and let Q := fg · Y j g 2 Gg. (Our general notation scheme is that StabG(Y ) := fg 2 G j g · Y = Y g.) Show that (G; X; Q) is a system of imprimitivity. (c) Suppose that (G; X) is a transitive left action, x 2 X. Show that (G; X) is primitive if and only if Gx is a maximal proper subgroup of G.
    [Show full text]
  • Computing the Maximal Subgroups of a Permutation Group I
    Computing the maximal subgroups of a permutation group I Bettina Eick and Alexander Hulpke Abstract. We introduce a new algorithm to compute up to conjugacy the maximal subgroups of a finite permutation group. Or method uses a “hybrid group” approach; that is, we first compute a large solvable normal subgroup of the given permutation group and then use this to split the computation in various parts. 1991 Mathematics Subject Classification: primary 20B40, 20-04, 20E28; secondary 20B15, 68Q40 1. Introduction Apart from being interesting themselves, the maximal subgroups of a group have many applications in computational group theory: They provide a set of proper sub- groups which can be used for inductive calculations; for example, to determine the character table of a group. Moreover, iterative application can be used to investigate parts of the subgroups lattice without the excessive resource requirements of com- puting the full lattice. Furthermore, algorithms to compute the Galois group of a polynomial proceed by descending from the symmetric group via a chain of iterated maximal subgroups, see [Sta73, Hul99b]. In this paper, we present a new approach towards the computation of the conju- gacy classes of maximal subgroups of a finite permutation group. For this purpose we use a “hybrid group” method. This type of approach to computations in permu- tation groups has been used recently for other purposes such as conjugacy classes [CS97, Hul], normal subgroups [Hul98, CS] or the automorphism group [Hol00]. For finite solvable groups there exists an algorithm to compute the maximal sub- groups using a special pc presentation, see [CLG, Eic97, EW].
    [Show full text]
  • Irreducible Character Restrictions to Maximal Subgroups of Low-Rank Classical Groups of Type B and C
    IRREDUCIBLE CHARACTER RESTRICTIONS TO MAXIMAL SUBGROUPS OF LOW-RANK CLASSICAL GROUPS OF TYPE B AND C KEMPTON ALBEE, MIKE BARNES, AARON PARKER, ERIC ROON, AND A.A. SCHAEFFER FRY Abstract Representations are special functions on groups that give us a way to study abstract groups using matrices, which are often easier to understand. In particular, we are often interested in irreducible representations, which can be thought of as the building blocks of all representations. Much of the information about these representations can then be understood by instead looking at the trace of the matrices, which we call the character of the representation. This paper will address restricting characters to subgroups by shrinking the domain of the original representation to just the subgroup. In particular, we will discuss the problem of determining when such restricted characters remain irreducible for certain low-rank classical groups. 1. Introduction Given a finite group G, a (complex) representation of G is a homomorphism Ψ: G ! GLn(C). By summing the diagonal entries of the images Ψ(g) for g 2 G (that is, taking the trace of the matrices), we obtain the corresponding character, χ = Tr◦Ψ of G. The degree of the representation Ψ or character χ is n = χ(1). It is well-known that any character of G can be written as a sum of so- called irreducible characters of G. In this sense, irreducible characters are of particular importance in representation theory, and we write Irr(G) to denote the set of irreducible characters of G. Given a subgroup H of G, we may view Ψ as a representation of H as well, simply by restricting the domain.
    [Show full text]
  • MAT 511 Notes on Maximal Ideals and Subgroups 9/10/13 a Subgroup
    MAT 511 Notes on maximal ideals and subgroups 9/10/13 A subgroup H of a group G is maximal if H 6= G, and, if K is a subgroup of G satisfying H ⊆ K $ G, then H = K. An ideal I of a ring R is maximal if I 6= R, and, if J is an ideal of R satisfying I ⊆ J $ R, then I = J. Zorn's Lemma Suppose P is a nonempty partially-ordered set with the property that every chain in P has an upper bound in P. Then P contains a maximal element. Here a chain C ⊆ P is a totally-ordered subset: for all x; y 2 C, x ≤ y or y ≤ x.A maximal element of P is an element x 2 P with the property x ≤ y =) x = y for all y 2 P. Partially-ordered sets can have several different maximal elements. Zorn's Lemma says, intuitively, if one cannot construct an ever-increasing sequence in P whose terms get arbitrarily large, then there must be a maximal element in P. It is equivalent to the Axiom of Choice: in essence we assume that Zorn's Lemma is true, when we adopt the ZFC axioms as the foundation of mathematics. Theorem 1. If I0 is an ideal of a ring R, and I0 6= R, then there exists a maximal ideal I of R with I0 ⊆ I. Proof. Let P be the set of proper (i.e., 6= R) ideals of R containing I0, ordered by inclusion. Then S P is nonempty, since I0 2 P.
    [Show full text]
  • A New Maximal Subgroup of E8 in Characteristic 3
    A New Maximal Subgroup of E8 in Characteristic 3 David A. Craven, David I. Stewart and Adam R. Thomas March 22, 2021 Abstract We prove the existence and uniqueness of a new maximal subgroup of the algebraic group of type E8 in characteristic 3. This has type F4, and was missing from previous lists of maximal subgroups 3 produced by Seitz and Liebeck–Seitz. We also prove a result about the finite group H = D4(2), that if H embeds in E8 (in any characteristic p) and has two composition factors on the adjoint module then p = 3 and H lies in this new maximal F4 subgroup. 1 Introduction The classification of the maximal subgroups of positive dimension of exceptional algebraic groups [13] is a cornerstone of group theory. In the course of understanding subgroups of the finite groups E8(q) in [3], the first author ran into a configuration that should not occur according to the tables in [13]. We elicit a previously undiscovered maximal subgroup of type F4 of the algebraic group E8 over an algebraically closed field of characteristic 3. This discovery corrects the tables in [13], and the original source [17] on which it depends. Theorem 1.1. Let G be a simple algebraic group of type E8 over an algebraically closed field of char- acteristic 3. Then G contains a unique conjugacy class of simple maximal subgroups of type F4. If X is in this class, then the restriction of the adjoint module L(E8) to X is isomorphic to LX(1000) ⊕ LX(0010), where the first factor is the adjoint module for X of dimension 52 and the second is a simple module of dimension 196 for X.
    [Show full text]
  • Maximal Subgroups of Finite Groups
    MAXIMAL SUBGROUPS OF FINITE GROUPS By LINDSEY-KAY LAUDERDALE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2014 c 2014 Lindsey-Kay Lauderdale ⃝ To Mom, Dad and Lisa ACKNOWLEDGMENTS I would like to thank my advisor Dr. Alexandre Turull, who first sparked my interest in group theory. His endless patience and support were invaluable to the completion of this dissertation. I am also grateful for the support, questions and suggestions of my committee members Dr. Kevin Keating, Dr. David Mazyck, Dr. Paul Robinson and Dr. Peter Sin. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS ................................. 4 LIST OF TABLES ..................................... 6 ABSTRACT ........................................ 7 CHAPTER 1 DISSERTATION OUTLINE ............................. 9 2 A BRIEF BACKGROUND OF FINITE GROUP THEORY ........... 11 2.1 Introduction ................................... 11 2.2 Maximal Subgroups ............................... 14 2.3 Notation and Some Definitions ......................... 17 2.4 On the Number of Maximal Subgroups .................... 18 3 UPPER BOUNDS FOR THE NUMBER OF MAXIMAL SUBGROUPS .... 20 3.1 Introduction ................................... 20 3.2 Upper Bounds Proven by Others ....................... 21 3.3 Preliminary Results ............................... 22 3.4 Proof of Main Theorem ............................. 23 4 LOWER BOUNDS FOR THE NUMBER OF MAXIMAL SUBGROUPS ...
    [Show full text]
  • Computing Maximal Subgroups of Finite Groups
    Computing maximal subgroups of finite groups John J. Cannon and Derek F. Holt Abstract We describe a practical algorithm for computing representatives of the conjugacy classes of maximal subgroups in a finite group, together with details of its implementation for permutation groups in the MAGMA system. We also describe methods for computing complements of normal subgroups and minimal supplements of normal soluble subgroups of finite groups. 1 Introduction The principal aim of this paper is to describe an algorithm for computing represen- tatives of the conjugacy classes of maximal subgroups of a finite group G, together with our implementation of this algorithm for finite permutation groups within the MAGMA system for computational algebra [2]. It is not a complete algorithm for solving this problem, because it depends on the availability of certain information about the finite nonabelian simple groups, including a detailed knowledge of their maximal subgroups. It can only be applied to groups G for which this information is already available or readily computable for each nonabelian composition factor of G. The precise extent to which it is currently applicable will be discussed later in Section 5. We shall call a finite group a TF-group if it has no nontrivial soluble normal subgroup. (This is because such groups have trivial Fitting subgroups.) The socle of a TF-group is a direct product of nonabelian simple groups. In particular, a group G is called almost simple if its socle is a nonabelian simple group S, and in this case G is isomorphic to a subgroup of the automorphism group Aut(S) of S.
    [Show full text]
  • THE MAXIMAL SUBGROUPS of the SYMMETRIC GROUP Lecture
    THE MAXIMAL SUBGROUPS OF THE SYMMETRIC GROUP MARTINO GARONZI Lecture notes of the Minicourse \The maximal subgroups of the symmetric group" given at the \Escola de Algebra"´ in Unicamp (Campinas, S~aoPaulo, Brazil) on December 3-7 2018. Version 1. I will improve the notes and release a more com- plete version in the future. I am grateful for any comment, criticism and correction. Contents 1. Basic notions about group actions 1 2. The symmetric group 2 3. The maximal subgroups of S5 3 4. Imprimitivity blocks 4 5. Maximal imprimitive subgroups 5 6. Intransitive maximal subgroups 7 7. Primitive maximal subgroups 7 7.1. Characteristically simple groups 7 7.2. Primitive groups 8 7.3. Multiple transitivity 10 7.4. Jordan groups 11 7.5. Primitive actions: O'Nan-Scott 13 References 15 1. Basic notions about group actions All group actions we consider are on the right. G acts on X by the rule (x; g) 7! xg if and only if the map γg : X ! X, x 7! xg induces a homomorphism G ! Sym(X), g 7! γg. The kernel of this homomorphism is the kernel of the action and the action is called faithful if it has trivial kernel. The orbits of the action are the sets O(x) = fxg : g 2 Gg for any x 2 X. The action is called transitive if there is some x 2 X such that O(x) = X (i.e. there is only one orbit), in other words for any x; y 2 X there exists g 2 G with xg = y.
    [Show full text]