On the Number of Maximal Subgroups in a Finite Group

Total Page:16

File Type:pdf, Size:1020Kb

On the Number of Maximal Subgroups in a Finite Group J. Group Theory 18 (2015), 535–551 DOI 10.1515/jgth-2015-0001 © de Gruyter 2015 On the number of maximal subgroups in a finite group L.-K. Lauderdale Communicated by Nigel Boston Abstract. For a finite group G, let m.G/ denote the set of maximal subgroups of G and .G/ denote the set of primes which divide G . In [4], it is proven that m.G/ .G/ when G is cyclic and if G is noncyclic m.G/j j .G/ p, wherej p .G/j D j is thej smallest prime that divides G . In thisj paper,j we j producej C two new lower2 bounds for m.G/ , both of which considerj j all of the primes in .G/. j j 1 Introduction For any finite group G, let .G/ denote the set of primes which divide G and let j j m.G/ denote the set of maximal subgroups of G. Lower bounds for the number of maximal subgroups have previously been investigated. In [4], three lower bounds are proven. In general, m.G/ .G/ and equality holds if and only if G is j j j j cyclic. Under further assumptions on the structure of G, this lower bound was improved. If G is noncyclic, then m.G/ .G/ p, where p .G/ is the j j j j C 2 smallest prime that divides G . Additionally, if G has a noncyclic Sylow subgroup j j and q .G/ is the smallest prime such that Q Syl .G/ is noncyclic, then it is 2 2 q proven that m.G/ .G/ q: (1.1) j j j j C Observe that given any set of distinct primes q1; q2; : : : ; qn where q1 is the ¹ º smallest, there exists a finite group G with .G/ q1; q2; : : : ; qn and m.G/ .G/ q1: D ¹ º j j D j j C For example, G Zq1 Zq1q2 qn achieves the lower bound in (1.1). However, D the previously stated lower bounds can be restrictive because they consider at most one prime in .G/. For instance, let G S10 Z11 Z143, where S10 D is the symmetric group on ten letters. Then .G/ 6 and G has a noncyclic j j D Sylow 2-subgroup. Therefore q 2 and equation (1.1) yields m.G/ 8, how- D j j ever m.G/ 4002. The lower bound in (1.1) can be drastically improved with j j D minimal assumptions on the structure of the group. 536 L.-K. Lauderdale In the present paper, we improve the existing lower bound for m.G/ by par- j j titioning .G/ into three sets. We consider the set of primes p for which G is not p-solvable, denoted .G/, and the set of primes q for which G is q-solvable. We further subdivide the latter set of primes into the set of primes which corre- spond to cyclic Sylow subgroups of G, denoted .G/, and the set of primes which correspond to noncyclic Sylow subgroups of G, denoted .G/. Under these con- siderations we obtain two new lower bounds for m.G/ . In addition to the sets j j .G/, .G/ and .G/, the first lower bound includes a further assumption on G. We assume that the nonabelian composition factors of G satisfy a technical prop- erty, namely Property B, which is defined in Definition 2.5. Theorem 1.1. Let G be a finite group. If the nonabelian composition factors of G satisfy Property B, then X X m.G/ .G/ p p: (1.2) j j j j C C p Ä.G/ p .G/ 2 2 Property B is not a very restrictive property and we conclude this paper by pro- viding some examples of simple groups that satisfy Property B (see Section 8). However, not all finite simple groups satisfy Property B and knowing the compo- sition factors of a group may increase the possible lower bound. For a group G, we introduce below the invariant ˛.G/ which takes into account more finely the influence of the composition factors on our problem. The following theorem does not require any special condition on the composition factors. Theorem 1.2. If G is a finite group, then X X m.G/ .G/ .p 1/ ˛.G/ .p 1/: (1.3) j j j j C C C C p Ä.G/ p .G/ 2 2 Notice that Theorem 1.2 implies Theorem 1.1 when ˛.G/ 1. The invariant ˛.G/ is closely connected to the values ˛.C/ as C runs over the nonabelian com- position factors of G. In the penultimate section (see Section 7), we analyze ˛.G/ and see that ˛.C/ tends to infinity for many families of finite simple groups C. Although, we provide many examples of finite simple groups which satisfy both ˛.C/ > 1 and Property B, our results do not use the classification of finite simple groups. Both Theorem 1.1 and Theorem 1.2 improve the lower bound in equation (1.1). Reconsidering the group G S10 Z11 Z143, the lower bound in (1.3) yields D m.G/ 4001, a vast improvement over the lower bound in (1.1). In most cases j j Theorem 1.2 gives a stronger result than Theorem 1.1. However, it is possible On the number of maximal subgroups in a finite group 537 for the lower bound in (1.2) to be sharper than the lower bound in (1.3) because not all finite groups G satisfy ˛.G/ 1. For instance, ˛.A6/ < 1 where A6 is the alternating group on six letters, and ˛.PSL.2; 7// < 1. It can be shown that both A6 and PSL.2; 7/ satisfy Property B and thus Theorem 1.1 is applicable. Theorem 1.1 gives the sharper bound for G PSL.2; 7/ Z11 Z143. In this D case, the lower bound in (1.3) yields m.G/ 21, but the lower bound in (1.2) j j yields m.G/ 28. j j 2 Definitions To improve the existing lower bounds for m.G/ , we first partition .G/ into three j j sets: .G/, .G/ and .G/. Definition 2.1. Let G be a finite group. Define .G/ as the set of p .G/ such that G is p-solvable and P Syl .G/ 2 2 p is cyclic. Define .G/ as the set of p .G/ such that G is p-solvable and P Syl .G/ 2 2 p is noncyclic. Define .G/ as the set of p .G/ such that p divides the order of a nonabel- 2 ian chief factor of G. To aid in counting some of the maximal subgroups of G with index a .G/-num- ber, we make the following definitions: Definition 2.2. Let S be a nonabelian simple group and assume M is a maximal subgroup of S. We say that M satisfies Property A if N .M /S Aut.S/. Let Aut.S/ D mA.S/ denote the set of maximal subgroups of S that satisfy Property A. Definition 2.3. Let G be a finite group and suppose C is a nonabelian composition P P factor of G. Define .C/ p .C/.p 1/ and .G/ p .G/.p 1/. D 2 C D 2 C Definition 2.4. Let G be a finite group and suppose C is a nonabelian composition mA.C/ factor of G. Set ˛.C/ j j . If G is not solvable, set D .C/ ˛.G/ min ˛.C/ C is a nonabelian composition factor of G D ¹ W º and if G is solvable, then set ˛.G/ 0. D Definition 2.5. Let S be a nonabelian finite simple group. We say that S satisfies Property B if m.G/ .S/, for all subgroups G such that S G Aut.S/. j j Ä Ä 538 L.-K. Lauderdale 3 Preliminary results In this section, we collect a few results which will aid in the proof of the main theorems. Lemma 3.1. Let p be a prime number and suppose that P is a noncyclic p-group. Let P=ˆ.P / be the elementary abelian group of rank k, where k 2 and ˆ.P / denotes the Frattini subgroup of P . Then pk 1 m.P / : j j D p 1 In particular, m.P / p 1. j j C Proof. Since P=ˆ.P / is an elementary abelian group of rank k, we have pk 1 m.P=ˆ.P // : j j D p 1 Because ˆ.P / is contained in every maximal subgroup of P , pk 1 m.P / m.P=ˆ.P // : j j D j j D p 1 pk 1 Observe that p 1 is smallest when k 2. In this case, D pk 1 p 1; p 1 D C so that m.P / p 1. j j C Theorem 3.2 (Maschke). Let G be a finite group and let F be a field whose char- acteristic does not divide G . If V is any FG-module and U is any submodule j j of V , then V has a submodule W such that V U W . D ˚ Proof. See for example [2, Section 18.1, Theorem 1]. Theorem 3.3. For a finite cyclic group G, m.G/ .G/ . j j D j j Proof. See for example [4, Theorem 3.1]. Lemma 3.4. Suppose that G is a finite group, and let .G/ p1; p2; : : : ; pn . D ¹ º For each i 1; 2; : : : ; n , let Pi Syl .G/. If G P1 P2 Pn, then 2 ¹ º 2 pi D m.G/ m.P1/ m.P2/ m.Pn/ .
Recommended publications
  • ON the SHELLABILITY of the ORDER COMPLEX of the SUBGROUP LATTICE of a FINITE GROUP 1. Introduction We Will Show That the Order C
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 353, Number 7, Pages 2689{2703 S 0002-9947(01)02730-1 Article electronically published on March 12, 2001 ON THE SHELLABILITY OF THE ORDER COMPLEX OF THE SUBGROUP LATTICE OF A FINITE GROUP JOHN SHARESHIAN Abstract. We show that the order complex of the subgroup lattice of a finite group G is nonpure shellable if and only if G is solvable. A by-product of the proof that nonsolvable groups do not have shellable subgroup lattices is the determination of the homotopy types of the order complexes of the subgroup lattices of many minimal simple groups. 1. Introduction We will show that the order complex of the subgroup lattice of a finite group G is (nonpure) shellable if and only if G is solvable. The proof of nonshellability in the nonsolvable case involves the determination of the homotopy type of the order complexes of the subgroup lattices of many minimal simple groups. We begin with some history and basic definitions. It is assumed that the reader is familiar with some of the rudiments of algebraic topology and finite group theory. No distinction will be made between an abstract simplicial complex ∆ and an arbitrary geometric realization of ∆. Maximal faces of a simplicial complex ∆ will be called facets of ∆. Definition 1.1. A simplicial complex ∆ is shellable if the facets of ∆ can be ordered σ1;::: ,σn so that for all 1 ≤ i<k≤ n thereexistssome1≤ j<kand x 2 σk such that σi \ σk ⊆ σj \ σk = σk nfxg. The list σ1;::: ,σn is called a shelling of ∆.
    [Show full text]
  • ON the INTERSECTION NUMBER of FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler
    University of Texas at Tyler Scholar Works at UT Tyler Math Theses Math Spring 5-14-2019 ON THE INTERSECTION NUMBER OF FINITE GROUPS Humberto Bautista Serrano University of Texas at Tyler Follow this and additional works at: https://scholarworks.uttyler.edu/math_grad Part of the Algebra Commons, and the Discrete Mathematics and Combinatorics Commons Recommended Citation Bautista Serrano, Humberto, "ON THE INTERSECTION NUMBER OF FINITE GROUPS" (2019). Math Theses. Paper 9. http://hdl.handle.net/10950/1332 This Thesis is brought to you for free and open access by the Math at Scholar Works at UT Tyler. It has been accepted for inclusion in Math Theses by an authorized administrator of Scholar Works at UT Tyler. For more information, please contact [email protected]. ON THE INTERSECTION NUMBER OF FINITE GROUPS by HUMBERTO BAUTISTA SERRANO A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Mathematics Kassie Archer, Ph.D., Committee Chair College of Arts and Sciences The University of Texas at Tyler April 2019 c Copyright by Humberto Bautista Serrano 2019 All rights reserved Acknowledgments Foremost I would like to express my gratitude to my two excellent advisors, Dr. Kassie Archer at UT Tyler and Dr. Lindsey-Kay Lauderdale at Towson University. This thesis would never have been possible without their support, encouragement, and patience. I will always be thankful to them for introducing me to research in mathematics. I would also like to thank the reviewers, Dr. Scott LaLonde and Dr. David Milan for pointing to several mistakes and omissions and enormously improving the final version of this thesis.
    [Show full text]
  • (Hereditarily) Just Infinite Property in Profinite Groups
    Inverse system characterizations of the (hereditarily) just infinite property in profinite groups Colin D. Reid October 6, 2018 Abstract We give criteria on an inverse system of finite groups that ensure the limit is just infinite or hereditarily just infinite. More significantly, these criteria are ‘universal’ in that all (hereditarily) just infinite profinite groups arise as limits of the specified form. This is a corrected and revised version of [8]. 1 Introduction Notation. In this paper, all groups will be profinite groups, all homomorphisms are required to be continuous, and all subgroups are required to be closed; in particular, all references to commutator subgroups are understood to mean the closures of the corresponding abstractly defined subgroups. For an inverse system Λ= {(Gn)n>0, ρn : Gn+1 ։ Gn} of finite groups, we require all the homomorphisms ρn to be surjective. A subscript o will be used to indicate open inclusion, for instance A ≤o B means that A is an open subgroup of B. We use ‘pronilpotent’ and ‘prosoluble’ to mean a group that is the inverse limit of finite nilpotent groups or finite soluble groups respectively, and ‘G-invariant subgroup of H’ to mean a subgroup of H normalized by G. A profinite group G is just infinite if it is infinite, and every nontrivial normal subgroup of G is of finite index; it is hereditarily just infinite if in addition every arXiv:1708.08301v1 [math.GR] 28 Aug 2017 open subgroup of G is just infinite. At first sight the just infinite property is a qualitative one, like that of simplicity: either a group has nontrivial normal subgroups of infinite index, or it does not.
    [Show full text]
  • Arxiv:1509.08090V1 [Math.GR]
    THE CLASS MN OF GROUPS IN WHICH ALL MAXIMAL SUBGROUPS ARE NORMAL AGLAIA MYROPOLSKA Abstract. We investigate the class MN of groups with the property that all maximal subgroups are normal. The class MN appeared in the framework of the study of potential counter-examples to the Andrews-Curtis conjecture. In this note we give various structural properties of groups in MN and present examples of groups in MN and not in MN . 1. Introduction The class MN was introduced in [Myr13] as the class of groups with the property that all maximal subgroups are normal. The study of MN was motivated by the analysis of potential counter-examples to the Andrews-Curtis conjecture [AC65]. It was shown in [Myr13] that a finitely generated group G in the class MN satisfies the so-called “generalised Andrews- Curtis conjecture” (see [BLM05] for the precise definition) and thus cannot confirm potential counter-examples to the original conjecture. Apart from its relation to the Andrews-Curtis conjecutre, the study of the class MN can be interesting on its own. Observe that if a group G belongs to MN then all maximal subgroups of G are of finite index. The latter group property has been considered in the literature for different classes of groups. For instance in the linear setting, Margulis and Soifer [MS81] showed that all maximal subgroups of a finitely generated linear group G are of finite index if and only if G is virtually solvable. The above property also was considered for branch groups, however the results in this direction are partial and far from being as general as for linear groups.
    [Show full text]
  • Math 602 Assignment 1, Fall 2020 Part A
    Math 602 Assignment 1, Fall 2020 Part A. From Gallier{Shatz: Problems 1, 2, 6, 9. Part B. Definition Suppose a group G operates transitively on the left of a set X. (i) We say that the action (G; X) is imprimitive if there exists a non-trivial partition Q of X which is stable under G. Here \non-trivial" means that Q 6= fXg and Q 6= ffxg : x 2 Xg : Such a partition Q will be called a system of imprimitivity for (G; X). (ii) We say that the action (G; X) is primitive if it is not imprimitive. 1. (a) Suppose that (G; X; Q) is a system of imprimitivity for a transitive left action (G; X), Y 2 Q, y 2 Y . Let H = StabG(Y ), K = StabG(y). Prove the following statements. • K < H < G and H operates transitively on Y . • jXj = jY j · jQj, jQj = [G : H], jY j = [H : K]. (These statements hold even if X is infinite.) (b) Suppose that (G; X) is a transitive left action, y 2 X, K := StabG(y), and H is a subgroup of G such that K < H < G. Let Y := H · y ⊂ X, and let Q := fg · Y j g 2 Gg. (Our general notation scheme is that StabG(Y ) := fg 2 G j g · Y = Y g.) Show that (G; X; Q) is a system of imprimitivity. (c) Suppose that (G; X) is a transitive left action, x 2 X. Show that (G; X) is primitive if and only if Gx is a maximal proper subgroup of G.
    [Show full text]
  • Atlasrep —A GAP 4 Package
    AtlasRep —A GAP 4 Package (Version 2.1.0) Robert A. Wilson Richard A. Parker Simon Nickerson John N. Bray Thomas Breuer Robert A. Wilson Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~raw Richard A. Parker Email: [email protected] Simon Nickerson Homepage: http://nickerson.org.uk/groups John N. Bray Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~jnb Thomas Breuer Email: [email protected] Homepage: http://www.math.rwth-aachen.de/~Thomas.Breuer AtlasRep — A GAP 4 Package 2 Copyright © 2002–2019 This package may be distributed under the terms and conditions of the GNU Public License Version 3 or later, see http://www.gnu.org/licenses. Contents 1 Introduction to the AtlasRep Package5 1.1 The ATLAS of Group Representations.........................5 1.2 The GAP Interface to the ATLAS of Group Representations..............6 1.3 What’s New in AtlasRep, Compared to Older Versions?...............6 1.4 Acknowledgements................................... 14 2 Tutorial for the AtlasRep Package 15 2.1 Accessing a Specific Group in AtlasRep ........................ 16 2.2 Accessing Specific Generators in AtlasRep ...................... 18 2.3 Basic Concepts used in AtlasRep ........................... 19 2.4 Examples of Using the AtlasRep Package....................... 21 3 The User Interface of the AtlasRep Package 33 3.1 Accessing vs. Constructing Representations...................... 33 3.2 Group Names Used in the AtlasRep Package..................... 33 3.3 Standard Generators Used in the AtlasRep Package.................. 34 3.4 Class Names Used in the AtlasRep Package...................... 34 3.5 Accessing Data via AtlasRep ............................
    [Show full text]
  • Computing the Maximal Subgroups of a Permutation Group I
    Computing the maximal subgroups of a permutation group I Bettina Eick and Alexander Hulpke Abstract. We introduce a new algorithm to compute up to conjugacy the maximal subgroups of a finite permutation group. Or method uses a “hybrid group” approach; that is, we first compute a large solvable normal subgroup of the given permutation group and then use this to split the computation in various parts. 1991 Mathematics Subject Classification: primary 20B40, 20-04, 20E28; secondary 20B15, 68Q40 1. Introduction Apart from being interesting themselves, the maximal subgroups of a group have many applications in computational group theory: They provide a set of proper sub- groups which can be used for inductive calculations; for example, to determine the character table of a group. Moreover, iterative application can be used to investigate parts of the subgroups lattice without the excessive resource requirements of com- puting the full lattice. Furthermore, algorithms to compute the Galois group of a polynomial proceed by descending from the symmetric group via a chain of iterated maximal subgroups, see [Sta73, Hul99b]. In this paper, we present a new approach towards the computation of the conju- gacy classes of maximal subgroups of a finite permutation group. For this purpose we use a “hybrid group” method. This type of approach to computations in permu- tation groups has been used recently for other purposes such as conjugacy classes [CS97, Hul], normal subgroups [Hul98, CS] or the automorphism group [Hol00]. For finite solvable groups there exists an algorithm to compute the maximal sub- groups using a special pc presentation, see [CLG, Eic97, EW].
    [Show full text]
  • Irreducible Character Restrictions to Maximal Subgroups of Low-Rank Classical Groups of Type B and C
    IRREDUCIBLE CHARACTER RESTRICTIONS TO MAXIMAL SUBGROUPS OF LOW-RANK CLASSICAL GROUPS OF TYPE B AND C KEMPTON ALBEE, MIKE BARNES, AARON PARKER, ERIC ROON, AND A.A. SCHAEFFER FRY Abstract Representations are special functions on groups that give us a way to study abstract groups using matrices, which are often easier to understand. In particular, we are often interested in irreducible representations, which can be thought of as the building blocks of all representations. Much of the information about these representations can then be understood by instead looking at the trace of the matrices, which we call the character of the representation. This paper will address restricting characters to subgroups by shrinking the domain of the original representation to just the subgroup. In particular, we will discuss the problem of determining when such restricted characters remain irreducible for certain low-rank classical groups. 1. Introduction Given a finite group G, a (complex) representation of G is a homomorphism Ψ: G ! GLn(C). By summing the diagonal entries of the images Ψ(g) for g 2 G (that is, taking the trace of the matrices), we obtain the corresponding character, χ = Tr◦Ψ of G. The degree of the representation Ψ or character χ is n = χ(1). It is well-known that any character of G can be written as a sum of so- called irreducible characters of G. In this sense, irreducible characters are of particular importance in representation theory, and we write Irr(G) to denote the set of irreducible characters of G. Given a subgroup H of G, we may view Ψ as a representation of H as well, simply by restricting the domain.
    [Show full text]
  • Arxiv:2002.11183V2 [Math.AG]
    Arithmetic statistics on cubic surfaces Ronno Das April 6, 2020 Abstract In this paper we compute the distributions of various markings on smooth cubic surfaces defined over the finite field Fq, for example the distribution of pairs of points, ‘tritangents’ or ‘double sixes’. We also compute the (rational) cohomology of certain associated bundles and covers over complex numbers. 1 Introduction The classical Cayley–Salmon theorem implies that each smooth cubic surface over an algebraically closed field contains exactly 27 lines (see Section 2 for detailed definitions). In contrast, for a surface over a finite field Fq, all 27 lines are defined over Fq but not necessarily over Fq itself. In other words, the action of the Frobenius Frobq permutes the 27 lines and only fixes a (possibly empty) subset of them. It is also classical that the group of all such permutations, which can be identified with the Galois group of an appropriate extension or cover, is isomorphic to the Weyl group W(E6) of type E6. This permutation of the 27 lines governs much of the arithmetic of the surface S: evidently the n pattern of lines defined over Fq and, less obviously, the number of Fq points on S (or UConf S etc). Work of Bergvall and Gounelas [BG19] allows us to compute the number of cubic surfaces over Fq where Frobq induces a given permutation, or rather a permutation in a given conjugacy class of W(E6). The results in this paper can be thought of as a combinatorial (Theorem 1.1) or representation-theoretic (Theorem 2.3) reinterpretation of their computation.
    [Show full text]
  • MAT 511 Notes on Maximal Ideals and Subgroups 9/10/13 a Subgroup
    MAT 511 Notes on maximal ideals and subgroups 9/10/13 A subgroup H of a group G is maximal if H 6= G, and, if K is a subgroup of G satisfying H ⊆ K $ G, then H = K. An ideal I of a ring R is maximal if I 6= R, and, if J is an ideal of R satisfying I ⊆ J $ R, then I = J. Zorn's Lemma Suppose P is a nonempty partially-ordered set with the property that every chain in P has an upper bound in P. Then P contains a maximal element. Here a chain C ⊆ P is a totally-ordered subset: for all x; y 2 C, x ≤ y or y ≤ x.A maximal element of P is an element x 2 P with the property x ≤ y =) x = y for all y 2 P. Partially-ordered sets can have several different maximal elements. Zorn's Lemma says, intuitively, if one cannot construct an ever-increasing sequence in P whose terms get arbitrarily large, then there must be a maximal element in P. It is equivalent to the Axiom of Choice: in essence we assume that Zorn's Lemma is true, when we adopt the ZFC axioms as the foundation of mathematics. Theorem 1. If I0 is an ideal of a ring R, and I0 6= R, then there exists a maximal ideal I of R with I0 ⊆ I. Proof. Let P be the set of proper (i.e., 6= R) ideals of R containing I0, ordered by inclusion. Then S P is nonempty, since I0 2 P.
    [Show full text]
  • A New Maximal Subgroup of E8 in Characteristic 3
    A New Maximal Subgroup of E8 in Characteristic 3 David A. Craven, David I. Stewart and Adam R. Thomas March 22, 2021 Abstract We prove the existence and uniqueness of a new maximal subgroup of the algebraic group of type E8 in characteristic 3. This has type F4, and was missing from previous lists of maximal subgroups 3 produced by Seitz and Liebeck–Seitz. We also prove a result about the finite group H = D4(2), that if H embeds in E8 (in any characteristic p) and has two composition factors on the adjoint module then p = 3 and H lies in this new maximal F4 subgroup. 1 Introduction The classification of the maximal subgroups of positive dimension of exceptional algebraic groups [13] is a cornerstone of group theory. In the course of understanding subgroups of the finite groups E8(q) in [3], the first author ran into a configuration that should not occur according to the tables in [13]. We elicit a previously undiscovered maximal subgroup of type F4 of the algebraic group E8 over an algebraically closed field of characteristic 3. This discovery corrects the tables in [13], and the original source [17] on which it depends. Theorem 1.1. Let G be a simple algebraic group of type E8 over an algebraically closed field of char- acteristic 3. Then G contains a unique conjugacy class of simple maximal subgroups of type F4. If X is in this class, then the restriction of the adjoint module L(E8) to X is isomorphic to LX(1000) ⊕ LX(0010), where the first factor is the adjoint module for X of dimension 52 and the second is a simple module of dimension 196 for X.
    [Show full text]
  • Finite Groups Whose Element Orders Are Consecutive Integers
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 143, 388X)0 (1991) Finite Groups Whose Element Orders Are Consecutive Integers ROLF BRANDL Mathematisches Institui, Am Hubland 12, D-W-8700 Wiirzberg, Germany AND SHI WUJIE Mathematics Department, Southwest-China Teachers University, Chongqing, China Communicated by G. Glauberman Received February 28, 1986 DEDICATED TO PROFESSORB. H. NEUMANN ON HIS 80~~ BIRTHDAY There are various characterizations of groups by conditions on the orders of its elements. For example, in [ 8, 1] the finite groups all of whose elements have prime power order have been classified. In [2, 16-181 some simple groups have been characterized by conditions on the orders of its elements and B. H. Neumann [12] has determined all groups whose elements have orders 1, 2, and 3. The latter groups are OC3 groups in the sense of the following. DEFINITION. Let n be a positive integer. Then a group G is an OC, group if every element of G has order <n and for each m <n there exists an element of G having order m. In this paper we give a complete classification of finite OC, groups. The notation is standard; see [S, 111. In addition, for a prime q, a Sylow q-sub- group of the group G is denoted by P,. Moreover Z{ stands for the direct product of j copies of Zj and G = [N] Q denotes the split extension of a normal subgroup N of G by a complement Q.
    [Show full text]