Clinicopathologic and Genomic Characterization of Inflammatory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Characterization of Genome-Wide TFCP2 Targets In
Xu et al. Journal of Experimental & Clinical Cancer Research (2015) 34:6 DOI 10.1186/s13046-015-0121-1 RESEARCH Open Access Characterization of genome-wide TFCP2 targets in hepatocellular carcinoma: implication of targets FN1 and TJP1 in metastasis Xiao Xu1†, Zhikun Liu1†, Lin Zhou2, Haiyang Xie2, Jun Cheng1, Qi Ling1, Jianguo Wang2, Haijun Guo1, Xuyong Wei2 and Shusen Zheng1* Abstract Background: Transcription factor CP2 (TFCP2) is overexpressed in hepatocellular carcinoma(HCC) and correlated with the progression of the disease. Here we report the use of an integrated systems biology approach to identify genome-wide scale map of TFCP2 targets as well as the molecular function and pathways regulated by TFCP2 in HCC. Methods: We combined Chromatin immunoprecipitation (ChIP) on chip along with gene expression microarrays to study global transcriptional regulation of TFCP2 in HCC. The biological functions, molecular pathways, and networks associated with TFCP2 were identified using computational approaches. Validation of selected target gene expression and direct binding of TFCP2 to promoters were performed by ChIP -PCR and promoter reporter. Results: TFCP2 fostered a highly aggressive and metastatic phenotype in different HCC cells. Transcriptome analysis showed that alteration of TFCP2 in HCC cells led to change of genes in biological functions involved in cancer, cellular growth and proliferation, angiogenesis, cell movement and attachment. Pathways related to cell movement and cancer progression were also enriched. A quest for TFCP2-regulated factors contributing to metastasis, by integration of transcriptome and ChIP on chip assay, identified fibronectin 1 (FN1) and tight junction protein 1 (TJP1) as targets of TFCP2, and as key mediators of HCC metastasis. -
1 Supporting Information for a Microrna Network Regulates
Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia. -
O-Glcnacylated C-Jun Antagonizes Ferroptosis Via Inhibiting GSH Synthesis in Liver Cancer T
Cellular Signalling 63 (2019) 109384 Contents lists available at ScienceDirect Cellular Signalling journal homepage: www.elsevier.com/locate/cellsig O-GlcNAcylated c-Jun antagonizes ferroptosis via inhibiting GSH synthesis in liver cancer T Yan Chena, Guoqing Zhua, Ya Liua,QiWua, Xiao Zhangb, Zhixuan Bianc, Yue Zhangd, ⁎ ⁎ Qiuhui Panc, , Fenyong Suna, a Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China b Shanghai Institute of Thoracic Tumors, Shanghai Chest Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China c Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China d Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China ARTICLE INFO ABSTRACT Keywords: Ferroptosis is a metabolism-related cell death. Stimulating ferroptosis in liver cancer cells is a strategy to treat Erastin liver cancer. However, how to eradicate liver cancer cells through ferroptosis and the obstacles to inducing O-GlcNAcylation ferroptosis in liver cancer remain unclear. Here, we observed that erastin suppressed the malignant phenotypes Phosphorylation of liver cancer cells by inhibiting O-GlcNAcylation of c-Jun and further inhibited protein expression, tran- Glutathione scription activity and nuclear accumulation of c-Jun. Overexpression of c-Jun-WT with simultaneous PuGNAc Transcription treatment conversely inhibited erastin-induced ferroptosis, whereas overexpression of c-Jun-WT alone or Promoter overexpression of c-Jun-S73A (a non-O-GlcNAcylated form of c-Jun) with PuGNAc treatment did not exert a similar effect. GSH downregulation induced by erastin was restored by overexpression of c-Jun-WT with si- multaneous PuGNAc treatment. -
Continuum of Phenotypes in HMSN-P and CMT Patients with TFG Mutation
1 Continuum of phenotypes in HMSN-P and CMT patients with TFG mutation 2 Marzieh Khani a, Hanieh Taheri a, Hosein Shamshiri b, Henry Houlden c, Stephanie Efthymiou c, 3 Afagh Alavi d Shahriar Nafissi b*, Elahe Elahi a, e* 4 a School of Biology, College of Science, University of Tehran, Tehran, Iran 5 b Dept. of Neurology, Tehran University of Medical Sciences, Tehran, Iran 6 c Dept. of Molecular Neuroscience, UCL Institute of Neurology, London, UK 7 d Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran 8 e Dept. of Biotechnology, College of Science, University of Tehran, Tehran, Iran 9 10 11 12 *Corresponding authors: 13 Elahe Elahi 14 Professor, University College of Science, University of Tehran 15 Phone: 0098-9122181251; Fax: 0098-2166405141 16 E-Mail: [email protected], [email protected] 17 Shahriar Nafissi 18 Professor, Dept. of Neurology, Tehran University of Medical Sciences, Tehran, Iran 19 Phone: 0098-9121060727; Fax: 0098-22884420 20 E-Mail: [email protected], [email protected] 21 22 Running head: p.(Gly269Val) in TFG cause of CMT and HMSN-P 23 No. figures: 2 24 No. tables: 4 25 No. supplementary files: 1 26 27 28 29 30 31 32 1 33 Abstract 34 Charcot-Marie-Tooth (CMT) is a common neuropathy, and hereditary motor and sensory neuropathy with 35 proximal predominance (HMSN-P) is a recently described rare neuromuscular disease. Whereas many genes 36 have been implicated for CMT, TFG is the only known HMSN-P causing gene. Within the framework of 37 diagnostic criteria, clinical variation is evident among CMT and also HMSN-P diagnosed individuals. -
Organ of Corti Size Is Governed by Yap/Tead-Mediated Progenitor Self-Renewal
Organ of Corti size is governed by Yap/Tead-mediated progenitor self-renewal Ksenia Gnedevaa,b,1, Xizi Wanga,b, Melissa M. McGovernc, Matthew Bartond,2, Litao Taoa,b, Talon Treceka,b, Tanner O. Monroee,f, Juan Llamasa,b, Welly Makmuraa,b, James F. Martinf,g,h, Andrew K. Grovesc,g,i, Mark Warchold, and Neil Segila,b,1 aDepartment of Stem Cell Biology and Regenerative Medicine, Keck Medicine of University of Southern California, Los Angeles, CA 90033; bCaruso Department of Otolaryngology–Head and Neck Surgery, Keck Medicine of University of Southern California, Los Angeles, CA 90033; cDepartment of Neuroscience, Baylor College of Medicine, Houston, TX 77030; dDepartment of Otolaryngology, Washington University in St. Louis, St. Louis, MO 63130; eAdvanced Center for Translational and Genetic Medicine, Lurie Children’s Hospital of Chicago, Chicago, IL 60611; fDepartment of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030; gProgram in Developmental Biology, Baylor College of Medicine, Houston, TX 77030; hCardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, TX 77030 and iDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; Edited by Marianne E. Bronner, California Institute of Technology, Pasadena, CA, and approved April 21, 2020 (received for review January 6, 2020) Precise control of organ growth and patterning is executed However, what initiates this increase in Cdkn1b expression re- through a balanced regulation of progenitor self-renewal and dif- mains unclear. In addition, conditional ablation of Cdkn1b in the ferentiation. In the auditory sensory epithelium—the organ of inner ear is not sufficient to completely relieve the block on Corti—progenitor cells exit the cell cycle in a coordinated wave supporting cell proliferation (9, 10), suggesting the existence of between E12.5 and E14.5 before the initiation of sensory receptor additional repressive mechanisms. -
The TFG-TEC Oncoprotein Induces Transcriptional Activation of the Human B-Enolase Gene Via Chromatin Modification of the Promoter Region
MOLECULAR CARCINOGENESIS 55:1411–1423 (2016) The TFG-TEC Oncoprotein Induces Transcriptional Activation of the Human b-Enolase Gene Via Chromatin Modification of the Promoter Region Ah-young Kim, Bobae Lim, JeeHyun Choi, and Jungho Kim* Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Korea Recurrent chromosome translocations are the hallmark of many human cancers. A proportion of human extraskeletal myxoid chondrosarcomas (EMCs) are associated with the characteristic chromosomal translocation t(3;9)(q11–12;q22), which results in the formation of a chimeric protein in which the N-terminal domain of the TRK-fused gene (TFG) is fused to the translocated in extraskeletal chondrosarcoma (TEC; also called CHN, CSMF, MINOR, NOR1, and NR4A3) gene. The oncogenic effect of this translocation may be due to the higher transactivation ability of the TFG-TEC chimeric protein; however, downstream target genes of TFG-TEC have not yet been identified. The results presented here, demonstrate that TFG-TEC activates the human b-enolase promoter. EMSAs, ChIP assays, and luciferase reporter assays revealed that TFG-TEC upregulates b-enolase transcription by binding to two NGFI-B response element motifs located upstream of the putative transcription start site. In addition, northern blot, quantitative real-time PCR, and Western blot analyses showed that overexpression of TFG-TEC up-regulated b-enolase mRNA and protein expression in cultured cell lines. Finally, ChIP analyses revealed that TFG-TEC controls the activity of the endogenous b-enolase promoter by promoting histone H3 acetylation. Overall, the results presented here indicate that TFG-TEC triggers a regulatory gene hierarchy implicated in cancer cell metabolism. -
MAGE-A11 Is Activated Through TFCP2/ZEB1 Binding Sites De-Methylation As Well As Histone Modification and Facilitates ESCC Tumor Growth
www.impactjournals.com/oncotarget/ Oncotarget, 2018, Vol. 9, (No. 3), pp: 3365-3378 Research Paper MAGE-A11 is activated through TFCP2/ZEB1 binding sites de-methylation as well as histone modification and facilitates ESCC tumor growth Shina Liu1,*, Fei Liu1,*, Weina Huang1, Lina Gu1, Lingjiao Meng1, Yingchao Ju1,2, Yunyan Wu1, Juan Li1, Lihua Liu1 and Meixiang Sang1,3 1Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China 2Animal Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China 3Tumor Research Institute, the Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, P. R. China *These authors contributed equally to this work Correspondence to: Meixiang Sang, email: [email protected] Keywords: MAGE-A11; ESCC; DNA methylation; histone acetylation; histone methylation Received: September 30, 2017 Accepted: November 15, 2017 Published: December 05, 2017 Copyright: Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Recently, we have reported that the product of Melanoma Antigens Genes (MAGE) family member MAGE-A11 is an independent poor prognostic marker for esophageal squamous cell carcinoma (ESCC). However, the reason how MAGE-A11 is activated in ESCC progression still remains unclear. In the current study, we demonstrated that DNA methylation and the subsequent histone posttranslational modifications play crucial roles in the regulation of MAGE-A11 in ESCC progression. We found that the methylation rate of TFCP2/ZEB1 binding site on MAGE-A11 promoter in ESCC tissues and cells is higher than the normal esophageal epithelial tissues and cells. -
Neglected Functions of TFCP2/TFCP2L1/UBP1 Transcription Factors May Offer Valuable Insights Into Their Mechanisms of Action
International Journal of Molecular Sciences Review Neglected Functions of TFCP2/TFCP2L1/UBP1 Transcription Factors May Offer Valuable Insights into Their Mechanisms of Action Agnieszka Taracha, Grzegorz Kotarba and Tomasz Wilanowski * Laboratory of Signal Transduction, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland; [email protected] (A.T.); [email protected] (G.K.) * Correspondence: [email protected]; Tel.: +48-22-5892-311 Received: 21 August 2018; Accepted: 19 September 2018; Published: 20 September 2018 Abstract: In recent years, the TFCP2 (transcription factor cellular promoter 2)/TFCP2L1 (TFCP2- like 1)/UBP1 (upstream binding protein 1) subfamily of transcription factors has been attracting increasing attention in the scientific community. These factors are very important in cancer, Alzheimer’s disease, and other human conditions, and they can be attractive targets for drug development. However, the interpretation of experimental results is complicated, as in principle, any of these factors could substitute for the lack of another. Thus, studying their hitherto little known functions should enhance our understanding of mechanisms of their functioning, and analogous mechanisms might govern their functioning in medically relevant contexts. For example, there are numerous parallels between placental development and cancer growth; therefore, investigating the roles of TFCP2, TFCP2L1, and UBP1 in the placenta may help us better understand their functioning in cancer, as is evidenced by the studies of various other proteins and pathways. Our review article aims to call the attention of the scientific community to these neglected functions, and encourage further research in this field. -
Identifying the Risky SNP of Osteoporosis with ID3-PEP Decision Tree Algorithm
Hindawi Complexity Volume 2017, Article ID 9194801, 8 pages https://doi.org/10.1155/2017/9194801 Research Article Identifying the Risky SNP of Osteoporosis with ID3-PEP Decision Tree Algorithm Jincai Yang,1 Huichao Gu,1 Xingpeng Jiang,1 Qingyang Huang,2 Xiaohua Hu,1 and Xianjun Shen1 1 School of Computer Science, Central China Normal University, Wuhan 430079, China 2School of Life Science, Central China Normal University, Wuhan 430079, China Correspondence should be addressed to Jincai Yang; [email protected] Received 31 March 2017; Revised 26 May 2017; Accepted 8 June 2017; Published 7 August 2017 Academic Editor: Fang-Xiang Wu Copyright © 2017 Jincai Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In the past 20 years, much progress has been made on the genetic analysis of osteoporosis. A number of genes and SNPs associated with osteoporosis have been found through GWAS method. In this paper, we intend to identify the suspected risky SNPs of osteoporosis with computational methods based on the known osteoporosis GWAS-associated SNPs. The process includes two steps. Firstly, we decided whether the genes associated with the suspected risky SNPs are associated with osteoporosis by using random walk algorithm on the PPI network of osteoporosis GWAS-associated genes and the genes associated with the suspected risky SNPs. In order to solve the overfitting problem in ID3 decision tree algorithm, we then classified the SNPs with positive results based on their features of position and function through a simplified classification decision tree which was constructed by ID3 decision tree algorithm with PEP (Pessimistic-Error Pruning). -
Grimme, Acadia.Pdf
MECHANISM OF ACTION OF HISTONE DEACETYLASE INHIBITORS ON SURVIVAL MOTOR NEURON 2 PROMOTER by Acadia L. Grimme A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Bachelors of Science in Biological Sciences with Distinction Spring 2018 © 2018 Acadia Grimme All Rights Reserved MECHANISM OF ACTION OF HISTONE DEACETYLASE INHIBITORS ON SURVIVAL MOTOR NEURON 2 PROMOTER by Acadia L. Grimme Approved: __________________________________________________________ Matthew E. R. Butchbach, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Deni S. Galileo, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Carlton R. Cooper, Ph.D. Committee member from the Department of Biological Sciences Approved: __________________________________________________________ Gary H. Laverty, Ph.D. Committee member from the Board of Senior Thesis Readers Approved: __________________________________________________________ Michael Chajes, Ph.D. Chair of the University Committee on Student and Faculty Honors ACKNOWLEDGMENTS I would like to acknowledge my thesis director Dr. Butchbach for his wonderful guidance and patience as I worked through my project. He has been an excellent research mentor over the last two years and I am forever thankful that he welcomed me into his lab. His dedication to his work inspires me as an aspiring research scientist. His lessons will carry on with me as I pursue future research in graduate school and beyond. I would like to thank both current and former members of the Motor Neuron Disease Laboratory: Sambee Kanda, Kyle Hinkle, and Andrew Connell. Sambee and Andrew patiently taught me many of the techniques I utilized in my project, and without them it would not be what it is today.