The Role of Hepcidin in Systemic Iron Regulation

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Hepcidin in Systemic Iron Regulation Molecular basis of iron homeostasis and its translation to the clinic Tomas Ganz, PhD, MD Systemic iron homeostasis Liver (storage, recycling) Spleen (recycling, storage) Liver Fe 20-25 mg/day Plasma Erythrocytes Fe-Tf 1-2 mg/day 1 ml of PRBC = 1 mg Fe Bone marrow (usage) Duodenum (absorption) Losses 1-2 mg/day During erythropoietic stimulation Liver (storage, recycling) Spleen (recycling, storage) Liver Fe Plasma Erythrocytes Fe-Tf 1 ml of PRBC = 1 mg Fe Bone marrow (usage) Duodenum (absorption) Losses Erythropoietin During infection/inflammation Liver (storage, recycling) Spleen (recycling, storage) Liver Fe Inflammation Plasma Erythrocytes Fe-Tf 1 ml of PRBC = 1 mg Fe Bone marrow (usage) Duodenum (absorption) Losses Hepcidin—an iron-regulatory peptide hormone • Made in the liver as 84 aa preprohepcidin • Cleaved to 25 aa bioactive hepcidin by furin • Secreted by hepatocytes • Regulates intestinal iron absorption and the distribution of iron to tissues DTHFPICIFCCGCCHRSKCGMCCKT Jordan et al. JBC 2009 Tomas Ganz Hepcidin peptide lowers plasma iron Synthetic hepcidin 50 µg IP/mouse 40 M) 30 20 * * * Serum IronSerum ( * 10 * * 0 0 1 2 3 4 5 6 24 48 72 96 Time (hours) Rivera et al. Blood 2005 Ferroportin • 12 transmembrane segment protein • Found in plants, invertebrates, vertebrates • In vertebrates, the receptor for hepcidin • The only cellular iron exporter known (Donovan et al.) • Present in the macrophages, duodenum, hepatocytes, and the placenta (Donovan et al., McKie et al., Abboud et al.) 45 61 115 127 203 206 324 343 393 450 512 518 23 80 96 152 186 228 307 362 374 471 493 537 N C Ferroportin is internalized by hepcidin and degraded in lysosomes control + 1 µg/ml hepcidin Nemeth et al. Science 2004 Regulation of intestinal iron absorption Dietary iron uptake Food Dietary iron uptake ferritin ferritin Duodenal enterocytes Fpn Fpn X Blood hepcidin Fe Fe Low hepcidin High hepcidin Regulation of erythrocyte iron recycling Erythrocyte Erythrocyte uptake uptake Macrophages ferritin ferritin Fpn Fpn X Iron release into plasma hepcidin Fe Fe Low hepcidin High hepcidin Hepcidin regulates dietary iron absorption and influx to plasma Liver Spleen Liver hepcidin Fe Fpn hepcidin Fpn Plasma Fe-Tf Erythrocytes Fpn Bone marrow Duodenum Tomas Ganz Signals regulating hepcidin Inflammation Liver Spleen Liver hepcidin Fe Fpn hepcidin Fpn Plasma Erythrocytes Fe-Tf Fpn Iron signals Bone marrow Duodenum Erythropoietic signal Hepcidin excess in anemia of inflammation • Hepcidin-dependent effects – Inflammatory cytokines increase hepcidin and cause Fe trapping in macrophages – Fe restricts hemoglobin synthesis and erythropoiesis is inhibited • Hepcidin-independent effects – Shortened erythrocyte lifespan – Direct suppression of erythropoiesis by cytokines Iron-restricted anemias Inflammation Liver Spleen Plasma hepcidin clearance Fe-Tf RBC Duodenum Bone Kidneys marrow Ablation of hepcidin is beneficial in anemia of inflammation induced by heat-killed Brucella abortus 18 16 hepcidin KO WT 14 saline 12 Brucella 10 8 Hemoglobin (g/dL) 6 0 7d 14d 21d 28d Time Kim et al. Blood 2014 Hepcidin deficiency in β-thalassemia secreted suppressors less hepcidin Fe overload Worse anemia • Failure of red cell precursors to mature into functional RBCs • Anemia, increased erythropoietin • Expansion of immature RBC precursors • Hepcidin-suppressive signal causes hepcidin deficiency Anemia • Increased Fe absorption, Fe overload Rational design of peptide agonists • Strategy for development: structure-function study of hepcidin and ferroportin C N 45 61 115 127 203 206 324 343 393 450 512 518 23 80 96 152 186 228 307 362 374 471 493 537 N C Hepcidin Ferroportin 25 aa peptide hormone 571 aa protein 4 disulfide bonds 12 transmembrane segments Preza at al. JCI 2011, Ramos et al. Blood 2012 Minihepcidin PR73 Ida-Thr-His-Dpa-bhPro-Arg-Cys-Arg-bhPhe-Ahx- Ida(NHPal)-CONH2 iminodiacetic acid, L-threonine, L-histidine, L-3,3-diphenylalanine, L-β-homoproline, L- arginine, L-cysteine, L-arginine, L-β-homophenylalanine, 6-aminohexanoic acid, iminodiacetic acid palmitylamide (PEG-free) Mouse model of β-thalassemia: minihepcidin improves anemia and decreases iron overload 1600 16 1400 14 p = 0.001 p = 0.0003 1200 12 g/g) 1000 10 800 8 6 600 Liver iron ( iron Liver Hemoglobin (g/dl) Hemoglobin 4 400 2 200 0 0 WT TH3/solvent TH3/MH WT TH3/solvent TH3/MH Mouse/treatment Mouse/treatment M004 (2.65 mg/kg) or solvent was administered 2x weekly SQ x 6 wks C Casu, S. Rivella et al. and Merganser Biotech A search for erythroid factor suppressing hepcidin • Stimulated erythropoiesis in mice by phlebotomy (0.5 ml) or EPO injection (200 U) 4 phlebotomy 2 * p<0.05 EPO ** p<0.01 1 * ***p<0.001 * ** 0.5 mRNA expression *** *** 0.25 *** *** Hamp 0.125 Liver 0.062 CTRL 4h 9h 12h 15h 24h • Gene chip expression profiling of the bone marrow to identify erythroid transcripts that 1) change before the hepcidin suppression and 2) encode secreted proteins Erythroferrone (Erfe) Erythroferrone (Fam132b, CTRP15) TNFα-like Polybasic cleavage sites? Signal sequence Collagen stalk GPP-rich • 50 kD glycoprotein highly expressed in erythropoietin-stimulated erythroblasts Erfe knockout mice do not suppress hepcidin in response to bleeding • Erfe1+/+, +/- and -/- mice were phlebotomized (0.5 ml) Hepcidin mRNA Hemoglobin recovery * p<0.05 ** p<0.01 *** p<0.001 Dose-response for mouse erythroferrone on hepatocytes 1.0 EC50 = 7 ng/ml ~ 140 pM 0.8 0.6 0.4 Fractional response Fractional 0.2 0.0 0 1 3 10 30 100 300 1000 Conc ng/ml mErfe (24-340) Mouse model of β-thalassemia: Ablation of Erfe reverses hepcidin suppression and improves iron overload Hepcidin Liver iron 200 *** 300 *** *** *** * 150 200 100 50 100 serum hepcidin (ng/mL) 0 g non-heme iron / g liver wet weight 0 WT WT Th3/+ Th3/+ Erfe-/-Th3/+ Erfe-/-Th3/+ Development of new treatments • Prevent iron overload and improve erythropoiesis in β-thalassemia – minihepcidins (hepcidin agonists) – erythroferrone antagonists • Release sequestered iron in anemia of inflammation and anemia of chronic kidney disease – hepcidin antagonists – erythroferrone agonists • UCLA licensed the intellectual property related to minihepcidin and erythroferrone to two startup companies for drug development Key contributors Ella Nemeth: Piotr Ruchala: Everything Minihepcidin design Airie Kim: León Kautz: Mouse models Erythroferrone of anemia of inflammation .
Recommended publications
  • The Role of Erythroferrone Hormone As Erythroid Regulator of Hepcidin and Iron Metabolism During Thalassemia and in Iron Deficiency Anemia- a Short Review
    Journal of Pharmaceutical Research International 32(31): 55-59, 2020; Article no.JPRI.63276 ISSN: 2456-9119 (Past name: British Journal of Pharmaceutical Research, Past ISSN: 2231-2919, NLM ID: 101631759) The Role of Erythroferrone Hormone as Erythroid Regulator of Hepcidin and Iron Metabolism during Thalassemia and in Iron Deficiency Anemia- A Short Review Tiba Sabah Talawy1, Abd Elgadir A. Altoum1 and Asaad Ma Babker1* 1Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates. Authors’ contributions All authors equally contributed for preparing this review article. All authors read and approved the final manuscript. Article Information DOI: 10.9734/JPRI/2020/v32i3130919 Editor(s): (1) Dr. Mohamed Fathy, Assiut University, Egypt. Reviewers: (1) Setila Dalili, Guilan University of Medical Sciences, Iran. (2) Hayder Abdul-Amir Makki Al-Hindy, University of Babylon, Iraq. Complete Peer review History: http://www.sdiarticle4.com/review-history/63276 Received 10 September 2020 Review Article Accepted 18 November 2020 Published 28 November 2020 ABSTRACT Erythroferrone (ERFE) is a hormone produced by erythroblasts in the bone marrow in response to erythropoietin controlling iron storage release through its actions on hepcidin, which acts on hepatocytes to suppress expression of the hormone hepcidin. Erythroferrone now considered is one of potential clinical biomarkers for assessing erythropoiesis activity in patients with blood disorders regarding to iron imbalance. Since discovery of in 2014 by Dr. Leon Kautz and colleagues and till now no more enough studies in Erythroferrone among human, most studies are conducted in animals. In this review we briefly address the Role of Erythroferrone hormone as erythroid regulator of hepcidin and iron metabolism during thalassemia and in iron deficiency anemia.
    [Show full text]
  • Ineffective Erythropoiesis: Associated Factors and Their Potential As Therapeutic Targets in Beta-Thalassaemia Major
    British Journal of Medicine & Medical Research 21(1): 1-9, 2017; Article no.BJMMR.31489 ISSN: 2231-0614, NLM ID: 101570965 SCIENCEDOMAIN international www.sciencedomain.org Ineffective Erythropoiesis: Associated Factors and Their Potential as Therapeutic Targets in Beta-Thalassaemia Major Heba Alsaleh 1, Sarina Sulong 2, Bin Alwi Zilfalil 3 and Rosline Hassan 1* 1Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia. 2Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia. 3Department of Paediatrics, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia. Authors’ contributions This work was carried out in collaboration between all authors. Authors HA and RH contributed to the conception, design and writing of this paper. Authors BAZ and SS contributed to critically revising the manuscript regarding important intellectual content. All authors read and approved the final manuscript. Article Information DOI: 10.9734/BJMMR/2017/31489 Editor(s): (1) Bruno Deltreggia Benites, Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil. (2) Domenico Lapenna, Associate Professor of Internal Medicine, Department of Medicine and Aging Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy. Reviewers: (1) Sadia Sultan, Liaquat National Hospital & Medical College, Karachi, Pakistan. (2) Burak Uz, Gazi University Faculty of Medicine, Turkey. Complete Peer review History: http://www.sciencedomain.org/review-history/18833 Received 9th January 2017 Accepted 21 st April 2017 Mini -review Article th Published 28 April 2017 ABSTRACT Beta-thalassaemia ( β-thal.) is single-gene disorder that exhibits much clinical variability. β-thal.
    [Show full text]
  • Metabolism, Renal Insufficiency and Life Xpectancy
    METABOLISM, RENAL INSUFFICIENCY AND LIFE EXPECTANCY Studies on obesity, chronic kidney diseases and aging Belinda Gilda Spoto Cover: “Né più mi occorrono, le coincidenze, le prenotazioni, le trappole, gli scorni di chi crede che la realtà sia quella che si vede“ (Eugenio Montale, Satura 1962-70) Painting by: Michela Finocchiaro (watercolor on paper 30 x 40) Printed by: Optima Grafische Communicatie, Rotterdam ISBN 978-94-6361-374-3 © B.G.Spoto, 2020 No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means without permission of the Author or, when appropriate, of the scientific journals in which parts of this book have been published. METABOLISM, RENAL INSUFFICIENCY AND LIFE EXPECTANCY Studies on obesity, chronic kidney diseases and aging Metabolisme, nierinsufficiëntie en levensverwachting Studies over obesitas, chronische nierziekten en veroudering Proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam Op gezag van de Rector Magnificus Prof.dr. R.C.M.E. Engels en volgens besluit van het College voor Promoties. De openbare verdediging zal plaatsvinden op Donderdag 30 januari 2020 om 11:30 door Belinda Gilda Spoto geboren te Reggio Calabria (Italië) DOCTORAL COMMITTEE Promoters: Prof. dr. F.U.S. Mattace-Raso Prof. dr. E.J.G. Sijbrands Other members: Prof. dr. R.P. Peeters Prof. dr. M.H. Emmelot-Vonk Dr. M. Kavousi Copromoter: Dr. G.L. Tripepi A Piero, il mio “approdo” sempre A Michela per avermi insegnato a scalare le montagne CONTENTS Chapter 1
    [Show full text]
  • Why Does Iron Overload Associated with Insulin
    WHY DOES IRON OVERLOAD ASSOCIATED WITH INSULIN RESISTANCE OCCUR? Thesis submitted to THE TAMIL NADU DR. M.G.R. MEDICAL UNIVERSITY CHENNAI for the degree of DOCTOR OF PHILOSOPHY By JOE VARGHESE DEPARTMENT OF BIOCHEMISTRY CHRISTIAN MEDICAL COLLEGE VELLORE – 632002, INDIA DECEMBER 2017 1 TABLE OF CONTENTS Page no. 1. Introduction ………………………………………………………………………….. 4 2. Aims and objectives …………………………………………………………………. 9 3. Review of literature ………………………………………………………………….. 10 3.1. Review of current understanding of systemic iron homeostasis ………………… 10 3.2. Hepcidin, the central regulator of iron homeostasis …………………………….. 18 3.3. Insulin, the central regulator of energy homeostasis ……………………………. 29 3.4. Diabetes mellitus ………………………………………………………………… 41 3.5. Role of insulin resistance in the pathogenesis of type 2 diabetes mellitus ……… 47 3.6. Role of beta cell dysfunction in the pathogenesis of type 2 diabetes mellitus ….. 53 3.7. Role of iron in the pathogenesis of type 2 diabetes mellitus ……………………. 55 4. Scope and plan of work ……………………………………………………………… 66 5. Materials and methods ………………………………………………………………. 69 5.1. Equipment used …………………………………………………………………. 69 5.2. Materials ………………………………………………………………………... 70 5.3. Methodology ……………………………………………………………………. 72 Study 1 …………………………………………………………………… 78 Study 2 …………………………………………………………………… 126 Study 3 …………………………………………………………………… 192 Study 4 …………………………………………………………………… 245 6. Results and discussion 6.1. Study 1 …………………………………………………………………………... 75 Abstract …………………………………………………………………… 75 Introduction ……………………………………………………………….
    [Show full text]
  • The Erythroblastic Island As an Emerging Paradigm in the Anemia of Inflammation
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2015 The re ythroblastic island as an emerging paradigm in the anemia of inflammation J. Hom Zucker School of Medicine at Hofstra/Northwell B. M. Dulmovits Zucker School of Medicine at Hofstra/Northwell N. Mohandas L. Blanc Zucker School of Medicine at Hofstra/Northwell Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Pediatrics Commons Recommended Citation Hom J, Dulmovits B, Mohandas N, Blanc L. The re ythroblastic island as an emerging paradigm in the anemia of inflammation. 2015 Jan 01; 63(1-3):Article 2758 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/2758. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact [email protected]. HHS Public Access Author manuscript Author Manuscript Author ManuscriptImmunol Author Manuscript Res. Author manuscript; Author Manuscript available in PMC 2016 December 01. Published in final edited form as: Immunol Res. 2015 December ; 63(0): 75–89. doi:10.1007/s12026-015-8697-2. The erythroblastic island as an emerging paradigm in the anemia of inflammation Jimmy Hom1, Brian M Dulmovits1, Narla Mohandas2, and Lionel Blanc1 1Laboratory of Developmental Erythropoiesis, The Feinstein Institute for Medical Research, Manhasset, NY 11030 2Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065 Abstract Terminal erythroid differentiation occurs in the bone marrow, within specialized niches termed erythroblastic islands.
    [Show full text]
  • Medium Cut-Off Dialyzer Improves Erythropoiesis Stimulating Agent
    www.nature.com/scientificreports OPEN Medium cut‑of dialyzer improves erythropoiesis stimulating agent resistance in a hepcidin‑independent manner in maintenance hemodialysis patients: results from a randomized controlled trial Jeong‑Hoon Lim1, Yena Jeon2, Ju‑Min Yook1, Soon‑Youn Choi1, Hee‑Yeon Jung1, Ji‑Young Choi1, Sun‑Hee Park1, Chan‑Duck Kim1, Yong‑Lim Kim1 & Jang‑Hee Cho1* The response to erythropoiesis stimulating agents (ESAs) is afected by infammation linked to middle molecules in hemodialysis (HD) patients. We evaluated the efect of a medium cut‑of (MCO) dialyzer on ESA resistance in maintenance HD patients. Forty‑nine patients who underwent high‑ fux HD were randomly allocated to the MCO or high‑fux group. The primary outcome was the changes of erythropoietin resistance index (ERI; U/kg/wk/g/dL) between baseline and 12 weeks. The MCO group showed signifcant decrease in the ESA dose, weight‑adjusted ESA dose, and ERI compared to the high‑fux group at 12 weeks (p < 0.05). The generalized estimating equation models revealed signifcant interactions between groups and time for the ESA dose, weight‑adjusted ESA dose, and ERI (p < 0.05). Serum iron and transferrin saturation were higher in the MCO group at 12 weeks (p < 0.05). The MCO group showed a greater reduction in TNF‑α and lower serum TNF‑α level at 12 weeks compared to the high‑fux group (p < 0.05), whereas no diferences were found in the reduction ratio of hepcidin and serum levels of erythropoietin, erythroferrone, soluble transferrin receptor and hepcidin between groups. HD with MCO dialyzer improves ESA resistance over time compared to high‑fux HD in maintenance HD patients.
    [Show full text]
  • The Bridge Between Bone Marrow Adipocytes and Hematopoietic Cells Ziru Li and Ormond A
    EDITORIALS Stem cell factor: the bridge between bone marrow adipocytes and hematopoietic cells Ziru Li and Ormond A. MacDougald Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA. E-mail: ZIRU LI - [email protected] doi:10.3324/haematol.2019.224188 hite adipocytes serve as an energy reservoir to in the bone marrow supernatant, which indicates that store excessive calories in the form of lipid BMAT is a primary source of SCF in bone marrow.5 Wdroplets and protect other tissues or organs from Deficiency of SCF in BMAT reduces the bone marrow cellu- ectopic lipid accumulation. Brown adipocytes express larity, hematopoietic stem and progenitor cells (HSPC), com- uncoupling protein 1 and are integral to adaptive thermoge- mon myeloid progenitors (CMP), megakaryocyte-erythro- nesis. Whereas the functions of adipocytes in either white or cyte progenitor (MEP) and granulocyte-monocyte progeni- brown adipose tissues are well documented, our knowledge tors (GMP) under steady-state condition. Consistent with of bone marrow adipocytes (BMA) remains in its infancy. these changes in the progenitor cells of bone marrow, mice Bone marrow adipose tissue (BMAT) occupies approximate- deficient for adipocyte SCF develop macrocytic anemia and ly 50-70% of the bone marrow volume in human adults.1 It reduction of neutrophils, monocytes and lymphocytes in cir- is a dynamic tissue and responds to multiple metabolic con- culation. In contrast to results in this study, Zhou et al. ditions. For example, BMAT
    [Show full text]
  • Iron Deficiency in Obesity and After Bariatric Surgery
    biomolecules Review Iron Deficiency in Obesity and after Bariatric Surgery Geir Bjørklund 1,* , Massimiliano Peana 2,* , Lyudmila Pivina 3,4, Alexandru Dosa 5 , Jan Aaseth 6 , Yuliya Semenova 3,4, Salvatore Chirumbolo 7,8 , Serenella Medici 2, Maryam Dadar 9 and Daniel-Ovidiu Costea 5 1 Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway 2 Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; [email protected] 3 Department of Neurology, Ophthalmology and Otolaryngology, Semey Medical University, 071400 Semey, Kazakhstan; [email protected] (L.P.); [email protected] (Y.S.) 4 CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, 071400 Semey, Kazakhstan 5 Faculty of Medicine, Ovidius University of Constanta, 900470 Constanta, Romania; [email protected] (A.D.); [email protected] (D.-O.C.) 6 Research Department, Innlandet Hospital Trust, 2380 Brumunddal, Norway; [email protected] 7 Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; [email protected] 8 CONEM Scientific Secretary, 37134 Verona, Italy 9 Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31975/148, Iran; [email protected] * Correspondence: [email protected] (G.B.); [email protected] (M.P.) Abstract: Iron deficiency (ID) is particularly frequent in obese patients due to increased circulating levels of acute-phase reactant hepcidin and adiposity-associated inflammation. Inflammation in obese Citation: Bjørklund, G.; Peana, M.; subjects is closely related to ID. It induces reduced iron absorption correlated to the inhibition of Pivina, L.; Dosa, A.; Aaseth, J.; duodenal ferroportin expression, parallel to the increased concentrations of hepcidin.
    [Show full text]
  • Recent Trends in Treatment of Thalassemia T ⁎ Amal El-Beshlawy, Mona El-Ghamrawy
    Blood Cells, Molecules and Diseases 76 (2019) 53–58 Contents lists available at ScienceDirect Blood Cells, Molecules and Diseases journal homepage: www.elsevier.com/locate/bcmd Review Recent trends in treatment of thalassemia T ⁎ Amal El-Beshlawy, Mona El-Ghamrawy Pediatric Hematology & BMT Unit, Pediatrics Department, Cairo University, Cairo, Egypt ARTICLE INFO ABSTRACT Keywords: Thalassemia is a common inherited monogenic disease. It is characterized by chronic hemolysis, ineffective Thalassemia erythropoiesis (IE) and iron overload. Despite advances in transfusion practices and chelation therapy, still many Ineffective erythropoiesis limitations in delivering these standard therapies exist. Challenges of currently available standard care and Iron dysregulation advances in understanding the underlying pathophysiological mechanisms in thalassemia stimulated research Gene therapy towards development of novel therapeutic targets. Agents reducing IE as Jak 2 inhibitors and Activin II receptor traps are promising and are currently in clinical trials. Other approaches targeting iron dysregulation as mini- hepcidins, exogenous transferrin and erythroferrone inhibitors are in preclinical studies. Gene therapy, a rapidly evolving field, has exhibited remarkable progress in recent years. Studies have focused on β or γ-globin addition, over expression of endogenous γ-globin-activating transcription factors, silencing of γ-globin repressors and genome editing of β-globin mutations or γ-globin repressors. In this article we provide an overview of emerging recent trends in treatment of thalassemia targeting IE, iron dysregulation and novel curative treatments as gene therapy and gene editing. 1. Introduction access to safe and effective transfusion remains a challenge. For best results, effective chelation therapy has to be started early before irre- Thalassemia is a common inherited monogenic disease worldwide versible iron-mediated tissue damage has occurred.
    [Show full text]
  • Codon-Optimized Fam132b Prevents Diet-Induced Obesity by Modulating Adrenergic Response and Insulin Action
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.31.275503; this version posted August 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Codon-optimized FAM132b prevents diet-induced obesity by modulating adrenergic response and insulin action Zhengtang Qi1,2, #, Jie Xia1,2, Xiangli Xue1,2, Wenbin Liu1,2, Zhuochun Huang1,2, Xue Zhang1,2, Yong Zou1,2, Jianchao Liu1,2, Jiatong Liu1,2, Xingtian Li1,2, Lu Cao1,2, Lingxia Li1,2, Zhiming Cui1,2, Benlong Ji1,2, Qiang Zhang1,2, Shuzhe Ding1,2*, Weina Liu1,2,#* 1 The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China 2 School of Physical Education and Health, East China Normal University, Shanghai 200241, China # These authors contributed equally. *Correspondence: [email protected] (W.L.), [email protected] (S.D.) Abstract FAM132b, also known as myonectin, has been identified as a myokine produced by exercise. It is a secreted protein precursor that belongs to the adipolin/erythroferrone family, and has hormone activity in circulation to regulate cellular iron homeostasis and lipid metabolism via unknown receptors. Here, adeno-associated viral vectors (AAV9) were engineered to induce overexpression of FAM132b with 2 codon mutations (A136T and P159A). Treatment of mice under high-fat diet feeding with FAM132b gene transfer resulted in marked reductions in body weight, fat depot, adipocytes size, glucose intolerance and insulin resistance. Moreover, FAM132b overproduction reduced glycemic response to epinephrine (EPI) in whole body and increased lipolytic response to EPI in adipose tissues.
    [Show full text]
  • Dysregulated Iron Metabolism in Polycythemia Vera: Etiology and Consequences
    Leukemia (2018) 32:2105–2116 https://doi.org/10.1038/s41375-018-0207-9 REVIEW ARTICLE Chronic myeloproliferative neoplasms Dysregulated iron metabolism in polycythemia vera: etiology and consequences 1 1 1 2 3 1 Yelena Z. Ginzburg ● Maria Feola ● Eran Zimran ● Judit Varkonyi ● Tomas Ganz ● Ronald Hoffman Received: 17 May 2018 / Revised: 7 June 2018 / Accepted: 18 June 2018 / Published online: 24 July 2018 © The Author(s) 2018. This article is published with open access Abstract Polycythemia vera (PV) is a chronic myeloproliferative neoplasm. Virtually all PV patients are iron deficient at presentation and/or during the course of their disease. The co-existence of iron deficiency and polycythemia presents a physiological disconnect. Hepcidin, the master regulator of iron metabolism, is regulated by circulating iron levels, erythroblast secretion of erythroferrone, and inflammation. Both decreased circulating iron and increased erythroferrone levels, which occur as a consequence of erythroid hyperplasia in PV, are anticipated to suppress hepcidin and enable recovery from iron deficiency. Inflammation which accompanies PV is likely to counteract hepcidin suppression, but the relatively low serum ferritin levels observed suggest that inflammation is not a major contributor to the dysregulated iron metabolism. Furthermore, potential fi 1234567890();,: 1234567890();,: defects in iron absorption, aberrant hypoxia sensing and signaling, and frequency of bleeding to account for iron de ciency in PV patients have not been fully elucidated. Insufficiently suppressed hepcidin given the degree of iron deficiency in PV patients strongly suggests that disordered iron metabolism is an important component of the pathobiology of PV. Normalization of hematocrit levels using therapeutic phlebotomy is the most common approach for reducing the incidence of thrombotic complications, a therapy which exacerbates iron deficiency, contributing to a variety of non-hematological symptoms.
    [Show full text]
  • Hepcidin Is Regulated by Promoter-Associated Histone Acetylation and HDAC3
    ARTICLE DOI: 10.1038/s41467-017-00500-z OPEN Hepcidin is regulated by promoter-associated histone acetylation and HDAC3 Sant-Rayn Pasricha 1,2, Pei Jin Lim1, Tiago L. Duarte 3, Carla Casu4, Dorenda Oosterhuis5, Katarzyna Mleczko-Sanecka6,7, Maria Suciu8, Ana Rita Da Silva6, Kinda Al-Hourani1, João Arezes1, Kirsty McHugh9, Sarah Gooding1, Joe N. Frost1, Katherine Wray1, Ana Santos3, Graça Porto3,10, Emmanouela Repapi11, Nicki Gray11, Simon J. Draper 9, Neil Ashley8, Elizabeth Soilleux12,13, Peter Olinga5, Martina U. Muckenthaler6, Jim R. Hughes 8, Stefano Rivella4, Thomas A. Milne 8, Andrew E. Armitage1 & Hal Drakesmith1 Hepcidin regulates systemic iron homeostasis. Suppression of hepcidin expression occurs physiologically in iron deficiency and increased erythropoiesis but is pathologic in thalassemia and hemochromatosis. Here we show that epigenetic events govern hepcidin expression. Erythropoiesis and iron deficiency suppress hepcidin via erythroferrone-dependent and -independent mechanisms, respectively, in vivo, but both involve reversible loss of H3K9ac and H3K4me3 at the hepcidin locus. In vitro, pan-histone deacetylase inhibition elevates hepcidin expression, and in vivo maintains H3K9ac at hepcidin-associated chromatin and abrogates hepcidin suppression by erythropoietin, iron deficiency, thalassemia, and hemochromatosis. Histone deacetylase 3 and its cofactor NCOR1 regulate hepcidin; histone deacetylase 3 binds chromatin at the hepcidin locus, and histone deacetylase 3 knockdown counteracts hepcidin suppression induced either by erythroferrone or by inhibiting bone morphogenetic protein signaling. In iron deficient mice, the histone deacetylase 3 inhibitor RGFP966 increases hepcidin, and RNA sequencing confirms hepcidin is one of the genes most differentially regulated by this drug in vivo. We conclude that suppression of hepcidin expression involves epigenetic regulation by histone deacetylase 3.
    [Show full text]