Hahn Et Al 2010 - Forests Jfi - Geo

Total Page:16

File Type:pdf, Size:1020Kb

Hahn Et Al 2010 - Forests Jfi - Geo GEOÖKO VOLUME/BAND XXXI, 28-49 GÖTTINGERN 2010 FOREST STRUCTURES OF THE JUAN FERNANDEZ ISLANDS, CHILE: SIGNIFICANCE FOR BIRD COMMUNITY AND CONSERVATION INGO HAHN, PABLO VERGARA & UWE RÖMER ZUSAMMENFASSUNG Drei Grundtypen der Waldstruktur werden auf dem Juan Fernandez-Archipel identifiziert und analysiert: Kulturwald/Forst der basalen Stufe, nativer Wald der montanen Stufe und nativer Baumfarn-Wald der subalpinen Stufe. Für den Kulturwald/Forst auf Robinson Crusoe sind die eingeschleppten Eucalyptus und Cupressus charakteristisch. Der montane Wald wird durch endemische Myrtenbäume der Gattung Myrceugenia auf beiden Hauptinseln dominiert. Der subalpine Baumfarnwald ist durch ein Mosaik der Gattungen Dicksonia und Drimys auf die Insel Alejandro Selkirk beschränkt, denn auf Robinson Crusoe wird diese Höhenstufen nicht erreicht. Die strukturellen Parameter divergieren stark sowohl zwischen autochthonen und allochthonen Waldtypen als auch zwischen autochthonen Wäldern unterschiedlicher Höhenstufen. Der montane Wald auf Robinson Crusoe und Alejandro Selkirk zeigt ähnliche strukturelle Muster, aber die Bestände auf Selkirk sind stärker verinselt und artenärmer. Die deutlichen strukturellen Unterschiede der analysierten Waldtypen spiegeln sich in der Vogeldiversität und -dichte wider. Native Wälder bevorteilen ein gleichmäßigeres Vorkommen von Arten und liefern einen diverseren Vogellebensraum; Kulturwälder/Forste können nur für einzelne heimische Vogelarten aufgrund bestimmter ökologischer Gegebenheiten von Bedeutung sein. Endemische Vögel hängen hochgradig von nativen Waldstrukturen ab, weil sie angepasst sind an spezifische Muster der Nahrungssuche, der Nistplatzwahl und des Schutzes von Fressfeinden. Anthropogen verursachte Zerstörung solch nativer Waldstrukturen hat mehrere Vogelarten an den Rand des Aussterbens gebracht. Naturschutz-Management muss die Wiederherstellung des gesamten Inselökosystem zum Ziel haben, beginnend mit Ausrottungsprogrammen für die eingeschleppten Säugetiere. Schlüsselworte: gefährdete Endemiten, Inselökologie, Pflanze-Tier-Interaktionen, Naturschutz, Ökosystem-Management, Vogelanpassung. SUMMARY Three principal forest structure types were identified and analysed on the Juan Fernandez Archipelago: cultivated forest of the basal region, native montane forest, and native sub- 28 alpine tree-fern forest. In the cultivated forest of Robinson Crusoe the introduced Eucalyptus and Cupressus are characteristic. The montane forest is dominated by endemic myrtle trees Myrceugenia and found on both major islands. The sub-alpine tree-fern forest is a Dicksonia- Drimys mosaic restricted to Alejandro Selkirk. Structural parameters between autochthonous and allochthonous forest types diverge strongly as well as between autochthonous forests of different altitude levels. The montane forests of Robinson Crusoe and Alejandro Selkirk show similar structural patterns, but stands are more scattered and species-poor on Selkirk. The clear structural differences between the analysed forest structures are reflected in bird diversity and abundance. Native forests favour a more equal occurrence of species and prepare a more diverse bird habitat; cultivated forests may be of importance for single species in regard to a specific ecological feature. Endemic birds highly depend on native forest structures, as they are adapted to specific patterns of forage, nest site, and shelter from predation. Human-related destruction of such native forest structures has brought several bird species close to extinction. Conservation management should restore the island ecosystem, starting with an eradication program of the introduced herbivores. Keywords: animal-plant interaction, bird adaptation, ecosystem management, island ecology, nature conservation, threatened endemics. 1 INTRODUCTION The structure of forests generally depends on the plant species present and the environmental impacts (Korpel 1995, Haberle 2003, Stuessy et al. 2005). In turn, forest structures have been identified to be a decisive factor for the presence of a certain animal community or occurrence of a specific bird species (e.g. Mattes 1988). On the Juan Fernandez Islands birds are the sole native land vertebrates, and the only animal group yet investigated in regard to its community ecology (Hahn et al. 2005, 2009). However, several of the endemic bird species are critically endangered and about to disappear from the community. According to King (1980, 1985), Simberloff (1978), and Wiens (1994) the main reason for extinction in island birds is the destruction and degradation of vegetation. Besides the bird community, a great number of other plant and animal species directly depends on the specifity of forest. Thus, the presentation of detailed forest structure patterns would enable a comparison of the demands of endemic birds, helping to identify significances for the community, and finally provide a basis for conservation management (Ricci 2006, comp. also Gerold & Markussen 2007). Skottsberg (1953) has given a provisory but comprehensive description of plant communities, including the first data on height and coverage of several of the archipelago’s forests. However, since his field studies in the years 1916 to 1918 introduced numerous species invaded forests, changed plant composition and structure, or even formed complete allochthonous stands. In the second half of the last century further aspects of forest ecology or selected units have been the matter of investigation (Kunkel 1956, Schwaar 1979, Stuessy 29 1992, Stuessy & Ono 1998), and advances in description and classification of the FLORA FERNANDEZIANA were made (Marticorena et al 1998, Bernadello et al 2006, Baeza et al. 2007, Wheeler 2007). In the year 2002 Greimler et al. (2002a) presented a detailed description of vegetation distribution on Robinson Crusoe Island (comp. also Moreira-Muñoz 2007). However, all these valuable surveys did not prepare recent information on structural patterns: and from the ornithological view specific scales not congruent with the present results derived from botanical methodology are favourable. The main question of this survey is: Which forest structures exist on the Juan Fernandez Islands, and which importance do they have for endemic versus invasive landbirds? No such investigations yet exist, but it can be hypothesised that endemic landbirds are more bound to native forest structures on islands than invasive landbirds. Therefore a comparative avifauna-focussed analysis of the forest environments of the Juan Fernandez Archipelago is aimed at, combining methodological approaches and data from vegetation structure research, phyto-coenology, and ornithology. 2 METHODS The Juan Fernández Archipelago is of volcanic origin and situated in the south-east Pacific Ocean off the coast of Chile (33° 28' 48'' S to 33° 47' 57'' S and 78° 47' 12'' W to 80° 47' 44'' W). It consists of the islands Robinson Crusoe (formerly Másatierra), Alejandro Selkirk (formerly Másafuera), Santa Clara, and some small rocks (Fig. 1). The easternmost Robinson Crusoe (47.11 km², 915 m high) is located 567 km away from the continent, the westernmost Alejandro Selkirk (44.64 km², 1320 m) another 167 km west of Robinson Crusoe, the smaller Santa Clara (2.23 km², 375 m) only 1.5 km south-west of Robinson Crusoe. The whole archipelago is a Chilean national park since 1935 and UNESCO Biosphere Reserve since 1977, except from the San Juan Bautista settlement. More detailed (bio)geographical descriptions may be taken from Castilla (1987), Skottsberg (1920-1956), and Stuessy & Ono (1998). 30 Fig. 1. Geographical position of the Juan Fernandez Archipelago National Park and its single islands Alejandro Selkirk, Robinson Crusoe and Santa Clara in the south-eastern Pacific Ocean off mainland Chile. The cold Humboldt Current causes a similar temperate oceanic climate in the islands like in southern Chile between 38° and 41° S latitude. 31 From 1992 to 2009 five field campaigns were carried out to study the ecology of the Juan Fernández Archipelago. All three major islands were visited during a total of 315 days. Composition and distribution of vegetation types may be compared to Skottsberg (1953), Greimler et al. (2002a), Hahn et al. (2005), and Hahn (2006). Forest structures are described on the base of structural vegetation analyses. These were made by measuring any plant individual in regard to its position, height, thickness of the stem, and crown extension to the directions within a sample plot. Data registration was completed by drawing rough sketches and taking photo shots. Field data then were transferred drawing on millimetre scaled paper. To also document the entire plant species composition in selected sample plots, vegetation relevees were carried out using the method of Braun-Blanquet (1964). These relevees were useful for comparisons to the results of Greimler et al. (2002a) as well as Skottsberg (1953), the latter following the Swedish school. Completing tabular data of species name, stem diameter, storey coverage, and height are given in the appendices. 3 RESULTS 3.1 FOREST STRUCTURE ANALYSES Principally the forests can be distinguished between types of the islands Robinson Crusoe and Alejandro Selkirk as well as between allochthonous and autochthonous types. Native forests once covered major parts of both these islands, as illustrated and reported from the 17th and 18th century (e.g. Walter & Robins 1748, comp. Danton et al. 1999). Through man-made fires, selective cutting, impact of introduced herbivores,
Recommended publications
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Breeding Systems and Reproduction of Indigenous Shrubs in Fragmented
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Breeding systems and reproduction of indigenous shrubs in fragmented ecosystems A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy III Plant Ecology at Massey University by Merilyn F Merrett .. � ... : -- �. � Massey University Palrnerston North, New Zealand 2006 Abstract Sixteen native shrub species with various breeding systems and pollination syndromes were investigated in geographically separated populations to determine breeding systems, reproductive success, population structure, and habitat characteristics. Of the sixteen species, seven are hermaphroditic, seven dioecious, and two gynodioecious. Two of the dioecious species are cryptically dioecious, producing what appear to be perfect, hermaphroditic flowers,but that functionas either male or female. One of the study species, Raukauaanomalus, was thought to be dioecious, but proved to be hermaphroditic. Teucridium parvifolium, was thought to be hermaphroditic, but some populations are gynodioecious. There was variation in self-compatibility among the fo ur AIseuosmia species; two are self-compatible and two are self-incompatible. Self­ incompatibility was consistent amongst individuals only in A. quercifolia at both study sites, whereas individuals in A. macrophylia ranged from highly self-incompatible to self-compatible amongst fo ur study sites. The remainder of the hermaphroditic study species are self-compatible. Five of the species appear to have dual pollination syndromes, e.g., bird-moth, wind-insect, wind-animal. High levels of pollen limitation were identified in three species at fo ur of the 34 study sites.
    [Show full text]
  • Aphrastura Masafuerae) on Alejandro Selkirk Island, Chile
    J Ornithol (2004) 145: 93–97 DOI 10.1007/s10336-003-0008-3 ORIGINAL ARTICLE Ingo Hahn Æ Uwe Ro¨mer Æ Roberto Schlatter Nest sites and breeding ecology of the Ma´safuera Rayadito (Aphrastura masafuerae) on Alejandro Selkirk Island, Chile Received: 13 May 2003 / Revised: 28 July 2003 / Accepted: 29 August 2003 / Published online: 27 January 2004 Ó Dt. Ornithologen-Gesellschaft e.V. 2004 Abstract The first nest sites of the endemic Ma´safuera Keywords Brood care Æ Furnariidae Æ Island birds Æ Rayadito (Aphrastura masafuerae) are described, the Neotropical endemics Æ Threatened species first one being found on 16 December 1992. Ma´safuera Rayaditos breed in small natural holes in steep rocks, the nest being hidden within the rock and not visible Introduction through the 3 cm-wide entrance. All nest sites were lo- cated in the summit region of Alejandro Selkirk Island The Ma´safuera Rayadito (Aphrastura masafuerae, Fur- above 1,200 m altitude, characterised by fern stands. nariidae) is an endemic species of Alejandro Selkirk Nesting has been reported from early December to late (formerly Ma´safuera) Island. It was the last land bird January. Feeding frequency increases only slightly dur- species of the Chilean Juan Ferna´ndez Archipelago to be ing nestling time. Both parents feed the nestlings in described, by Philippi and Landbeck (1866). Only a few similar proportions. During the daily round no regular records of this species exist: Ba¨ ckstro¨ m observed four variation in feeding frequency occurs, although it is of- individuals in 1917 (Lo¨ nnberg 1921) and Philippi re- ten higher during the first hours after sunrise.
    [Show full text]
  • Tree Ferns: Monophyletic Groups and Their Relationships As Revealed by Four Protein-Coding Plastid Loci
    Molecular Phylogenetics and Evolution 39 (2006) 830–845 www.elsevier.com/locate/ympev Tree ferns: Monophyletic groups and their relationships as revealed by four protein-coding plastid loci Petra Korall a,b,¤, Kathleen M. Pryer a, Jordan S. Metzgar a, Harald Schneider c, David S. Conant d a Department of Biology, Duke University, Durham, NC 27708, USA b Department of Phanerogamic Botany, Swedish Museum of Natural History, Stockholm, Sweden c Albrecht-von-Haller Institute für PXanzenwissenschaften, Georg-August-Universität, Göttingen, Germany d Natural Science Department, Lyndon State College, Lyndonville, VT 05851, USA Received 3 October 2005; revised 22 December 2005; accepted 2 January 2006 Available online 14 February 2006 Abstract Tree ferns are a well-established clade within leptosporangiate ferns. Most of the 600 species (in seven families and 13 genera) are arbo- rescent, but considerable morphological variability exists, spanning the giant scaly tree ferns (Cyatheaceae), the low, erect plants (Plagiogy- riaceae), and the diminutive endemics of the Guayana Highlands (Hymenophyllopsidaceae). In this study, we investigate phylogenetic relationships within tree ferns based on analyses of four protein-coding, plastid loci (atpA, atpB, rbcL, and rps4). Our results reveal four well-supported clades, with genera of Dicksoniaceae (sensu Kubitzki, 1990) interspersed among them: (A) (Loxomataceae, (Culcita, Pla- giogyriaceae)), (B) (Calochlaena, (Dicksonia, Lophosoriaceae)), (C) Cibotium, and (D) Cyatheaceae, with Hymenophyllopsidaceae nested within. How these four groups are related to one other, to Thyrsopteris, or to Metaxyaceae is weakly supported. Our results show that Dicksoniaceae and Cyatheaceae, as currently recognised, are not monophyletic and new circumscriptions for these families are needed. © 2006 Elsevier Inc.
    [Show full text]
  • Conservation, Restoration, and Development of the Juan Fernandez Islands, Chile"
    Revista Chilena de Historia Natural 74:899-910, 2001 DOCUMENT Project "Conservation, Restoration, and Development of the Juan Fernandez islands, Chile" Proyecto conservaci6n, restauraci6n y desarrollo de las islas Juan Fernandez, Chile JAIME G. CUEVAS 1 & GART VAN LEERSUM 1Corresponding author: Corporaci6n Nacional Forestal, Parque Nacional Archipielago de Juan Fernandez, Vicente Gonzalez 130, Isla Robinson Crusoe, Chile ABSTRACT From a scientific point of view, the Juan Fernandez islands contain one of the most interesting floras of the planet. Although protected as a National Park and a World Biosphere Reserve, 400 years of human interference have left deep traces in the native plant communities. Repeated burning, overexploitation of species, and the introduction of animal and plant plagues have taken 75 % of the endemic vascular flora to the verge of extinction. In 1997, Chile's national forest service (Corporaci6n Nacional Forestal, CONAF) started an ambitious project, whose objective is the recovery of this highly complex ecosystem with a socio-ecological focus. Juan Fernandez makes an interesting case, as the local people (600 persons) practically live within the park, therefore impeding the exclusion of the people from any 2 conservation program. Secondly, the relatively small size of the archipelago (100 km ) permits the observation of the effects of whatever modification in the ecosystem on small scales in time and space. Thirdly, the native and introduced biota are interrelated in such a way that human-caused changes in one species population may provoke unexpected results amongst other, non-target species. The project mainly deals with the eradication or control of some animal and plant plagues, the active conservation and restoration of the flora and the inclusion of the local people in conservation planning.
    [Show full text]
  • Tree Fern (Dicksoniaceae and Cyathaceae) Allelopathy in the Monteverde Cloud Forest Katie Heckendom and Melody Saeman
    Tree fern (Dicksoniaceae and Cyathaceae) Allelopathy in the Monteverde Cloud Forest Katie Heckendom and Melody Saeman Albertson College of Idaho University of Wisconsin-Madison _____________________________________________________________ ABSTRACT The purpose of this experiment was to look at the effects of Allelopathy between six species of tree ferns in the Monteverde Cloud Forest. We analyzed these effects by comparing plant abundances under the tree ferns to controls. We also compared controls to germination of seeds and spores grown with water or leachate made from the tree fern fronds. We found significantly higher plant abundances in controls than under the tree ferns. Also significantly less seed and spore germination than controls was found. There was not a significant difference between species of tree ferns in their inhibition of plants under the tree ferns. We did observe a difference in allelopathic effects on germinating tomato seeds and Dicksonia gigantea spores, though not for Lophosoria quadripinnata spores. These results lead us to conclude that Allelopathy in nature is affected by other factors such as facilitation or competition but different species of tree ferns do show differing levels of Allelopathy. Allelopathy in tree ferns inhibits spores more than seeds indicating that more closely related species inhibit each other more, at least in this case. Also we confirmed previous studies that found Allelopathy in tree ferns. RESUMEN El propósito de nuestro experimento debía mirar los efectos de alelopatía entre seis especies de helechos arborecentes. En el Bosque de Nube de Monteverde. Analizamos estos efectos comparando planta las abundancias bajo los helechos arborecentes a controles. Comparamos también los controles a la germinación de semillas y esporas crecidas con agua o leachate hizo de las trundas del helecho de árbol.
    [Show full text]
  • Genetic Consequences of Anagenetic Speciation in Endemic Angiosperms of Ullung Island, Korea
    J. Jpn. Bot. 91 Suppl.: 83–98 (2016) Genetic Consequences of Anagenetic Speciation in Endemic Angiosperms of Ullung Island, Korea a, b c,d Koji TAKAYAMA *, Byung-Yun SUN and Tod Falor STUESSY aMuseum of Natural and Environmental History, Shizuoka, 5762, Oya, Suruga-ku, Shizuoka, 422-8017 JAPAN; bDepartment of Life Science, Chonbuk National University, Jeonju, 54896 KOREA; cHerbarium and Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 1315, Kinnear Road, Columbus, OH 43212, U.S.A.; dDepartment of Botany and Biodiversity Research, University of Vienna, 14, Rennweg, A-1030, Vienna, AUSTRIA *Corresponding author: [email protected] (Accepted on March 3, 2016) Two major modes of speciation exist in the evolution of endemic plants of oceanic islands: cladogenesis and anagenesis. The former is where an immigrant population becomes established and then disperses into different ecological zones on the same, or neighboring, island. Over time and in isolation, these different lineages diverge and adapt to their new environments, such that eventually they are regarded as distinct species. These cladogenetic radiations have been chronicled in considerable detail in Hawaii, Galápagos, and the Canary Islands. Anagenesis is a process of transformation of species. After establishment, an immigrant population grows in size but does not split into divergent lines due to a lack of ecological opportunity. Gene flow is maintained among subpopulations, and genetic variation accumulates due to mutation and recombination. The highest known level of anagenesis in the endemic flora of any oceanic island occurs in Ullung Island, Korea. This small island lies 137 km east of the Korean Peninsula.
    [Show full text]
  • Historical Reconstruction of Climatic and Elevation Preferences and the Evolution of Cloud Forest-Adapted Tree Ferns in Mesoamerica
    Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica Victoria Sosa1, Juan Francisco Ornelas1,*, Santiago Ramírez-Barahona1,* and Etelvina Gándara1,2,* 1 Departamento de Biología Evolutiva, Instituto de Ecología AC, Carretera antigua a Coatepec, El Haya, Xalapa, Veracruz, Mexico 2 Instituto de Ciencias/Herbario y Jardín Botánico, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico * These authors contributed equally to this work. ABSTRACT Background. Cloud forests, characterized by a persistent, frequent or seasonal low- level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes Submitted 29 May 2016 in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal Accepted 18 October 2016 distribution of tree ferns to investigate ancestral area and elevation and environmental Published 16 November 2016 preferences of Mesoamerican tree ferns.
    [Show full text]
  • Of the FLORIDA STATE MUSEUM Biological Sciences
    of the FLORIDA STATE MUSEUM Biological Sciences Volume 32 1987 Number 1 FLORISTIC STUDY OF MORNE LA VISITE AND PIC MACAYA NATIONAL PARKS, HAITI Walter S. Judd THREE NEW ANGIOSPERMS FROM PARC NATIONAL PIC MACAYA, MASSIF DE LA HOTTE, HAITI Walter S. Judd and James D. Skean, Jr. S A./4 UNIVERSITY OF FLORIDA GAINESVILLE Numbers of the BULLETIN OF THE FLORIDA STATE MUSEUM, BIOLOGICAL SCIENCES, are published at irregular intervals. Volumes contain about 300 pages and are not necessarily completed in any one calendar year. OLIVER L. AuSTIN, JR., Editor S. DAVID WEBB, Associate Editor RHODA J. BRYANL Managing Editor Consultants for this issue: JOHN H. BEAMAN JAMES L. LUTEYN Communications concerning purchase or exchange of the publications and all manuscripts should be addressed to: Managing Editor, Bulletin; Florida State Museum; University of Florida; Gainesville FL 32611; U.S.A. This public document was promulgated at an annual cost of $6240.00 or $6.240 per copy. It makes available to libraries, scholars, and all interested persons the results of researches in the natural sciences, emphasizing the circum-Caribbean region. ISSN: 0071-6154 CODEN: BF 5BA5 Publication date: December 23, 1987 Price: $6.40 FLORISTIC STUDY OF MORNE LA VISITE AND PIC MACAYA NATIONAL PARKS, HAITIl Walter S. Judd2 ABSTRACT A floristic and vegetational survey of two recently established national parks in the poorly known mountains of southern Haiti, i.e. Parc National Pic Macaya (in the Massif de La Hotte) and Parc National Morne La Visite (in the Massif de La Selle), clearly documents the rich and highly endemic nature of the tracheophyte (especially angiosperm) flora of the parks, and confirms EL Ekman's early reports of the region's flora.
    [Show full text]
  • Expected Impacts of Climate Change on Tree Ferns Distribution and Diversity 1 Patterns in Subtropical Atlantic Forest 2
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.16.909614; this version posted January 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Title: Expected impacts of climate change on tree ferns distribution and diversity 2 patterns in subtropical Atlantic Forest 3 4 Running title: Tree ferns distribution and diversity in future scenarios 5 6 André Luís de Gaspera,b,c, Guilherme Salgado Grittzb, Carlos Henrique Russia, Carlos 7 Eduardo Schwartzc, Arthur Vinicius Rodriguesd 8 9 a Regional University of Blumenau, Rua Antônio da Veiga, 140 - Itoupava Seca, 89030- 10 903 - Blumenau - SC – Brasil. +55 47 98446-5810. [email protected]. 11 b Postgraduate program in Biodiversity, Regional University of Blumenau, Rua Antônio 12 da Veiga, 140 - Itoupava Seca, 89030-000 - Blumenau - SC – Brasil. 13 c Postgraduate program in Forestry Engineering, Regional University of Blumenau, Rua 14 São Paulo, 3360 - Itoupava Seca, 89030-903 - Blumenau - SC – Brasil. 15 d Postgraduate program in Ecology, Federal University of Rio Grande do Sul, Av. Bento 16 Gonçalves, 9500 - Agronomia - Porto Alegre - RS - Brasil. 17 18 Corresponding author: André Luís de Gasper ([email protected]) 19 20 Acknowledgments: The authors are thankful to Fundação de Amparo à Pesquisa e 21 Inovação de Santa Catarina (FAPESC) for supporting IFFSC and for Coordenação de 22 Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, 23 for postgraduate research grants.
    [Show full text]