A Hybrid System for Temporal Information Extraction from Clinical Text Buzhou Tang,1,2 Yonghui Wu,1 Min Jiang,1 Yukun Chen,3 Joshua C Denny,3,4 Hua Xu1,3

Total Page:16

File Type:pdf, Size:1020Kb

A Hybrid System for Temporal Information Extraction from Clinical Text Buzhou Tang,1,2 Yonghui Wu,1 Min Jiang,1 Yukun Chen,3 Joshua C Denny,3,4 Hua Xu1,3 Research and applications A hybrid system for temporal information extraction from clinical text Buzhou Tang,1,2 Yonghui Wu,1 Min Jiang,1 Yukun Chen,3 Joshua C Denny,3,4 Hua Xu1,3 1School of Biomedical ABSTRACT than general English texts due to lack of formalism Informatics, The University of Objective To develop a comprehensive temporal in writing quality. Texas Health Science Center at Houston, Houston, Texas, USA information extraction system that can identify events, To accelerate TIE research in the medical 2Department of Computer temporal expressions, and their temporal relations in domain, the 2012 Informatics for Integrating Science, Harbin Institute of clinical text. This project was part of the 2012 i2b2 Biology and Beside (i2b2) clinical NLP challenge Technology Shenzhen Graduate clinical natural language processing (NLP) challenge on focused on extraction of temporal information School, Shenzhen, Guangdong, temporal information extraction. from hospital discharge summaries.4 The challenge China 3Department of Biomedical Materials and methods The 2012 i2b2 NLP consists of three sub-tasks: (1) clinical event extrac- Informatics, Vanderbilt challenge organizers manually annotated 310 clinic tion with relevant attributes (eg, polarity) in clinic University, School of Medicine, notes according to a defined annotation guideline: a text; (2) temporal expression extraction, which Nashville, Tennessee, USA training set of 190 notes and a test set of 120 notes. requires both identification and normalization of 4Department of Medicine, Vanderbilt University, School of All participating systems were developed on the training text strings indicating date, time, and duration; and Medicine, Nashville, set and evaluated on the test set. Our system consists of (3) temporal relation extraction, which determines Tennessee, USA three modules: event extraction, temporal expression if a temporal link (‘TLink’) exists between two extraction, and temporal relation (also called Temporal events, two times, or one event and one time, and Correspondence to Link, or ‘TLink’) extraction. The TLink extraction module what type (before, after,oroverlap) of TLink it is. Dr Hua Xu, School of fi Biomedical Informatics, contains three individual classi ers for TLinks: The TLink extraction task was further divided into The University of Texas Health (1) between events and section times, (2) within a two tracks: ‘end-to-end’ (using system generated Science Center at Houston, sentence, and (3) across different sentences. The events and temporal expressions) and TLink-only 7000 Fannin St, Suite 600, performance of our system was evaluated using scripts (using gold standard events and temporal expres- Houston, TX 77030, USA; [email protected] provided by the i2b2 organizers. Primary measures were sions). In this paper, we describe our TIE system micro-averaged Precision, Recall, and F-measure. developed for the i2b2 challenge. It is a compre- Received 9 January 2013 Results Our system was among the top ranked. It hensive pipeline-based system that addressed all Revised 11 March 2013 achieved F-measures of 0.8659 for temporal expression sub-tasks and was the top-ranked system in the Accepted 18 March 2013 extraction (ranked fourth), 0.6278 for end-to-end TLink i2b2 challenge in both the end-to-end TLink and Published Online First fi 9 April 2013 track (ranked rst), and 0.6932 for TLink-only track TLink-only evaluations. (ranked first) in the challenge. We subsequently investigated different strategies for TLink extraction, and BACKGROUND were able to marginally improve performance with an In the general English domain, many investigators F-measure of 0.6943 for TLink-only track. have studied TIE from natural-language text corpora, such as newswires. TIE work began pri- marily with temporal representation in the 1980s. An important work was the interval-based algebra INTRODUCTION for representing temporal information in natural Temporal information extraction (TIE) is a challen- language, proposed by Allen in 1983.5 Many early ging area of natural language processing (NLP) studies adopted Allen’s representation, which research and is an important component of many promptly became a standard. In the 1990s, the NLP systems, such as question answering, docu- widespread development of large annotated text ment summarization, and machine translation. For corpora for NLP advanced TIE research dramatic- clinical NLP systems that process medical narrative ally. Community-wide information extraction tasks data, accurate recognition and interpretation of the started to include TIE tasks. The message under- timing of medical events is crucial for many standing conferences (MUCs) sponsored by the US medical reasoning tasks. To generate a complete government organized two consecutive temporal- timeline of medical events of a patient, a clinical related tasks: MUC-6 (1995)6 and MUC-7 (1998).7 TIE system must be able to identify events (eg, In MUC-6, extracting absolute time information medical concepts), temporal expressions (eg, dates (ie, extracting exactly-specified times in the text) associated with events), and temporal relations was a part of a general named entity recognition between two events. Although significant efforts (NER) task. In MUC-7, the TIE task was expanded have been devoted to the representation, annota- to include extraction of relative times also. These tion, and extraction of temporal information in the two tasks defined the Timex tags, which interpret general English domain (eg, the TimeML frame- time expressions into a normalized ISO standard 1 89 To cite: Tang B, Wu Y, work ), the performance of the state-of-the-art form through the TIDES Timex2 guidelines. In Jiang M, et al. J Am Med TIE systems is still not ideal (F-measures around 2004, extracting and normalizing temporal expres- Inform Assoc 2013;20: 60–70%).23Moreover, extracting temporal infor- sions according to the Timex2 guidelines for both – 828 835. mation from clinical text can be more challenging English and Chinese texts was part of the Time 828 Tang B, et al. J Am Med Inform Assoc 2013;20:828–835. doi:10.1136/amiajnl-2013-001635 Research and applications Expression Recognition and Normalization Evaluation chal- methods to extract temporal expressions from clinical narra- lenge, sponsored by the Automatic Content Extraction tives.16 17 22 For example, Reeves et al extended the open- program.10 These tasks provided preliminary but valuable con- source temporal awareness and reasoning systems for question tributions to TIE research. interpretation (TARSQI) toolkit, originally developed from news Rapid development of TIE methods started in 2004 with reports, to extract temporal expressions from veterans affairs the work of TimeML,1 a robust specification language for (VA) clinical text. They found that temporal expressions in events and temporal expressions in natural language. The clinic notes were very different from those in the newswire TimeML schema mainly integrates two annotation schemes: domain, and the out-of-the-box implementation of the TARSQI TIDES (Translingual Information Detection, Extraction, and toolkit performed poorly.22 Some existing clinical NLP systems, Summarization) TIMEX2 and STAG (Sheffield Temporal such as ConText25 and MedLEE,26 also have the capability to Annotation Guidelines).11 12 It defined three elements of tem- recognize certain temporal expressions and link them to clinical poral information: events, temporal expressions, and temporal concepts. More comprehensive systems such as developed by relations. Events, including verbs, adjectives, and nominals, cor- Zhou et al,16 19 27 can not only extract temporal expressions responding to events and states are classified into different associated with medical events, but also reason about temporal types, and have various attributes, including tense, aspect, and information in clinical narrative reports. For more details of other features. Temporal expressions are token sequences that studies in clinical TIE, see the review paper by Zhou and denote times with various attributes such as their normalized Hripcsak.27 Nevertheless, very few studies have investigated the values. TimeML also represents temporal relations between use of TimeML in the medical domain. Recent studies by events/times using an Allen-like format. It defines temporal rela- Savova et al17 21 have annotated clinical text using TimeML. tions using three types of links: TLinks (Temporal Links), To advance the TIE research in the medical domain, organi- SLinks (Subordination Links), and ALinks (Aspectual Links). zers of the 2012 i2b2 clinical NLP challenge prepared an anno- TimeML has become an ISO standard for temporal annotation. tated clinical corpus based on TimeML and organized a clinical Several TimeML-based annotated corpora have been created. TIE competition similar to the TimeEval2 competition. The The popular corpora include TimeBank1.2, AQUAIN, 2012 i2b2 challenge consisted of three subtasks: (1) Event TempEval, and TempEval2. Among them, the TempEval corpus, extraction: six types of clinical events were extracted for the based on TimeBank1.2, was created for the temporal relation i2b2 challenge, including medical problems, tests, treatments, task at TempEval1 in 2007.2 For the Tempeval2 task in 2010, a clinical departments, evidentials, and occurrences. Every event multilingual corpus was created.313Detailed information about also has two attributes: polarity and modality. The polarity attri- these corpora can be found at http://www.timeml.org/site/
Recommended publications
  • Temporal Information Extraction and Coreference Resolution in Electronic Health Records Julien Tourille
    Extracting Clinical Event Timelines : Temporal Information Extraction and Coreference Resolution in Electronic Health Records Julien Tourille To cite this version: Julien Tourille. Extracting Clinical Event Timelines : Temporal Information Extraction and Coref- erence Resolution in Electronic Health Records. Document and Text Processing. Université Paris Saclay (COmUE), 2018. English. NNT : 2018SACLS603. tel-01997223 HAL Id: tel-01997223 https://tel.archives-ouvertes.fr/tel-01997223 Submitted on 28 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Abstract Important information for public health is contained within electronic health records. Being able to extract this information automatically would allow to improve the daily medical care and to foster advances in clinical research. However, the large majority of it remains locked in documents written in natural language. Among all the clinical aspects that are of interest in these records, the patient timeline is one of the most important. Being able to retrieve clinical timelines would allow for a better understanding of some clinical phenomena such as disease progression and longitudinal ef- fects of medications. It would also allow to improve medical question answering and clinical outcome prediction systems. Accessing the clinical timeline is needed to evaluate the quality of the healthcare pathway by comparing it to clinical guidelines, and to highlight the steps of the pathway where specic care should be provided.
    [Show full text]
  • GUIR at Semeval-2016 Task 12: Temporal Information Processing for Clinical Narratives
    GUIR at SemEval-2016 task 12: Temporal Information Processing for Clinical Narratives Arman Cohan, Kevin Meurer and Nazli Goharian Information Retrieval Lab Department of Computer Science Georgetown University farman, [email protected], [email protected] Abstract Researchers have explored ways to extract temporal information from clinical text. Velupillai Extraction and interpretation of temporal et al. (2015) developed a pipeline based on information from clinical text is essential ClearTK3 and SVM with lexical features to extract for clinical practitioners and researchers. TIMEX3 and EVENT mentions. In I2b2 2012 SemEval 2016 Task 12 (Clinical TempEval) temporal challenge, all top performing teams 1 addressed this challenge using the THYME used a combination of supervised classification corpus, a corpus of clinical narratives annotated with a schema based on TimeML2 and rule based methods for extracting temporal guidelines. We developed and evaluated information and relations (Sun et al., 2013). approaches for: extraction of temporal Besides THYME corpus, there have been other expressions (TIMEX3) and EVENTs; TIMEX3 efforts in clinical temporal annotation including and EVENT attributes; document-time works by Roberts et al. (2008), Savova et relations; and narrative container relations. al. (2009) and Galescu and Blaylock (2012). Our approach is based on supervised learning Previous work has also investigated extracting (CRF and logistic regression), utilizing temporal relations. Examples of these efforts various sets of syntactic, lexical and semantic features with addition of manually crafted include: classification by SVM (Chambers et rules. Our system demonstrated substantial al., 2007), Integer Linear Programming (ILP) for improvements over the baselines in all the temporal ordering (Chambers and Jurafsky, 2008), tasks.
    [Show full text]
  • Survey of Temporal Information Extraction
    J Inf Process Syst, Vol.15, No.4, pp.931~956, August 2019 ISSN 1976-913X (Print) https://doi.org/10.3745/JIPS.04.0129 ISSN 2092-805X (Electronic) Survey of Temporal Information Extraction Chae-Gyun Lim*, Young-Seob Jeong**, and Ho-Jin Choi* Abstract Documents contain information that can be used for various applications, such as question answering (QA) system, information retrieval (IR) system, and recommendation system. To use the information, it is necessary to develop a method of extracting such information from the documents written in a form of natural language. There are several kinds of the information (e.g., temporal information, spatial information, semantic role information), where different kinds of information will be extracted with different methods. In this paper, the existing studies about the methods of extracting the temporal information are reported and several related issues are discussed. The issues are about the task boundary of the temporal information extraction, the history of the annotation languages and shared tasks, the research issues, the applications using the temporal information, and evaluation metrics. Although the history of the tasks of temporal information extraction is not long, there have been many studies that tried various methods. This paper gives which approach is known to be the better way of extracting a particular part of the temporal information, and also provides a future research direction. Keywords Annotation Language, Temporal Information, Temporal Information Extraction 1. Introduction Documents are used to deliver information to the readers. In the past, readers were human, but computers are becoming a new class of readers. Computers can collect information much faster than humans can, and are capable of storing much more information than humans are.
    [Show full text]
  • Annotating Temporal Information in Clinical Narratives ⇑ Weiyi Sun A, , Anna Rumshisky B, Ozlem Uzuner C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Biomedical Informatics 46 (2013) S5–S12 Contents lists available at ScienceDirect Journal of Biomedical Informatics journal homepage: www.elsevier.com/locate/yjbin Methodological Review Annotating temporal information in clinical narratives ⇑ Weiyi Sun a, , Anna Rumshisky b, Ozlem Uzuner c a Department of Informatics, University at Albany, SUNY, 1400 Washington Ave., Draper 114B, Albany, NY 12222, United States b Department of Computer Science, University of Massachusetts, 198 Riverside St., Olsen Hall, Lowell, MA 01854, United States c Department of Information Studies, University at Albany, SUNY, 1400 Washington Ave., Draper 114A, Albany, NY 12222, United States article info abstract Article history: Temporal information in clinical narratives plays an important role in patients’ diagnosis, treatment and Received 21 May 2013 prognosis. In order to represent narrative information accurately, medical natural language processing Accepted 10 July 2013 (MLP) systems need to correctly identify and interpret temporal information. To promote research in this Available online 19 July 2013 area, the Informatics for Integrating Biology and the Bedside (i2b2) project developed a temporally anno- tated corpus of clinical narratives. This corpus contains 310 de-identified discharge summaries, with Keywords: annotations of clinical events, temporal expressions and temporal relations. This paper describes the pro- Natural
    [Show full text]
  • Reconstructing the Patient's Natural History from Electronic
    Title: Reconstructing the Patient’s Natural History from Electronic Health Records Authors: 1. Corresponding Author Name: Marjan Najafabadipour Affiliation: Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain Postal Address: Centro de Tecnología Biomédica (CTB), Campus de Montegancedo, Universidad Politécnica de Madrid, M-40, Pozuelo de Alarcón, Madrid, 28223 Email: [email protected] Mobile: +34612247147 ORCID: 0000-0002-1428-9330 2. Coauthor Name: Massimiliano Zanin Affiliation: Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain Email: [email protected] ORCID: 0000-0002-5839-0393 3. Coauthor Name: Alejandro Rodríguez-González Affiliation: Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain Email: [email protected] ORCID: 0000-0001-8801-4762 4. Coauthor Name: Maria Torrente Affiliation: Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain Email: [email protected] 5. Coauthor Name: Beatriz Nuñez García Affiliation: Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain Email: [email protected] 6. Coauthor Name: Juan Luis Cruz Bermudez Affiliation: Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain Email: [email protected] 7. Coauthor Name: Mariano Provencio Affiliation: Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain Email: [email protected] 8. Coauthor Name: Ernestina Menasalvas Affiliation: Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain Email: [email protected] ORCID: 0000-0002-5615-6798 1 Abstract. The automatic extraction of a patient’s natural history from Electronic Health Records (EHRs) is a critical step towards building intelligent systems that can reason about clinical variables and support decision making. Although EHRs contain a large amount of valuable information about the patient’s medical care, this information can only be fully understood when analyzed in a temporal context.
    [Show full text]
  • Temporal Information Extraction Extracting Events and Temporal Expressions a Literature Survey
    Temporal Information Extraction Extracting Events and Temporal Expressions A Literature Survey Naman Gupta 133050012 June 18, 2015 Chapter 1 Introduction Information on web is increasing at infinitum. There exists plethora of data on World Wide Web (WWW) in various electronic and digital form. Thus, web has become an unstructured global area where information even if available, cannot be directly used for desired applications. One is often faced with an information overload and demands for some automated help. Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine- readable documents by means of Text Mining and Natural Language Processing (NLP) techniques. Extracted structured information can be used for variety of enterprise or personal level task of varying complexity. In this survey report we will discuss literature related to temporal expressions and event extraction. 1.1 Temporal Expression Recognition Temporal Expression Recognition (TER) is the process of locating phrases that denote temporal infor- mation. Temporal expressions may be an expressed point in time, a duration or a frequency. These expressions can be used in information extraction and question-answering to (a) answer time-specific queries, (b) arrange information in a chronological manner, etc. Research in TER mostly exists in news domain text, arguably because of availability of large corpora and presence of temporal expressions in news documents. In recent times, TER has also been applied to other domains like medical (Sohn et al., 2013), (Jindal and Roth, 2013), (Xu et al., 2013), (Roberts et al., 2013). Initially, temporal expressions were considered a type of named entities and their identification was part of the named entity recognition task.
    [Show full text]
  • Ann K. Irvine. Natural Language Processing and Temporal Information Extraction in Emergency Department Triage Notes. a Master’S Paper for the M.S
    Ann K. Irvine. Natural Language Processing and Temporal Information Extraction in Emergency Department Triage Notes. A Master’s Paper for the M.S. in I.S degree. April, 2008. 56 pages. Advisor: Stephanie W. Haas Electronic patient records, including the Emergency Department (ED) Triage Note (TN), provide a rich source of textual information. Processing clinical texts to create important pieces of structured information will be useful to clinicians treating patients, clinicians in training, and researchers and practitioners in biosurveillance. This work applies natural language processing (NLP) and information extraction (IE) techniques to the TN genre of text. In particular, it presents the Triage Note Temporal Information Extraction System (TN-TIES), which combines a shallow parser, machine learned classifiers, and hand- written rules to identify, extract, and interpret temporal information in TNs in preparation for the automatic creation of a timeline of events leading up to a patient’s visit to the ED. The success of TN-TIES suggests that NLP and IE techniques are appropriate for the genre and that the automatic production of a timeline of TN events is a realistic application. Headings: Medical informatics – Technological innovations Medical records – Data processing Natural Language Processing Semantics – Data processing Temporal event analysis Text processing (Computer Science) NATURAL LANGUAGE PROCESSING AND TEMPORAL INFORMATION EXTRACTION IN EMERGENCY DEPARTMENT TRIAGE NOTES by Ann K. Irvine A Master’s paper submitted to the faculty of the School of Information and Library Science of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Master of Science in Information Science .
    [Show full text]
  • Linguistic Support for Protest Event Data Collection
    Universitat Autonoma` de Barcelona TESI DOCTORAL Linguistic Support for Protest Event Data Collection Dirigida per: Autor(a): Dr. Xavier Blanco Escoda, Vera Danilova, M. Sc. Dr. Mikhail Alexandrov Doctorat en Lleng¨uesi Cultures Rom`aniques Department de Filologia Francesa i Rom`anica Facultat de Filosofia i Lletres September, 2015 UNIVERSITAT AUTONOMA` DE BARCELONA Abstract Facultat de Filosofia i Lletres Department de Filologia Francesa i Rom`anica Linguistic Support for Protest Event Data Collection Vera Danilova, M. Sc. ii The development of approaches to structuring chaotic information streams coming from the web led to the emergence of a new powerful instrument for the study of col- lective human behaviour: Internet Sociology. The variety of user-generated data, both quantitative and qualitative, allowed for a research from a different perspective, without the need of traditional questionnaires. Sociologists benefit from the data coming from news, blogs, social networks, comments, etc. to get an insight into the relation between online and offline collective human behaviour trends. Social science has a long history of research on the protest activity. Today, the sys- tematic quantitative study of this phenomenon acquires importance in the light of the world-famous events, such as Maidan, Gezi Park protests, "Charlie Hebdo" and others. Protests are being reported almost daily by the news and are constantly reverberating across the social media. Today’s news are global and discuss similar events in different languages producing lots of duplicate messages and, sometimes, contradictory descrip- tions. Reports are created by either individual authors or agencies and vary in their textual representation. Despite the fact that news media credibility is questionable, it is still the most used data source in the context of protest events collection.
    [Show full text]
  • Modern Clinical Text Mining: a Guide and Review
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202010.0649.v2 Modern Clinical Text Mining: A Guide and Review Bethany Percha1;2 1Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10025; email: [email protected] 2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA, 10025 Xxxx. Xxx. Xxx. Xxx. YYYYAA Keywords https://doi.org/10.1146/((please add text mining, natural language processing, electronic health record, article doi)) clinical text, machine learning Abstract Electronic health records (EHRs) are becoming a vital source of data for healthcare quality improvement, research, and operations. How- ever, much of the most valuable information contained in EHRs remains buried in unstructured text. The field of clinical text mining has ad- vanced rapidly in recent years, transitioning from rule-based approaches to machine learning and, more recently, deep learning. With new meth- ods come new challenges, however, especially for those new to the field. This review provides an overview of clinical text mining for those who are encountering it for the first time (e.g. physician researchers, opera- tional analytics teams, machine learning scientists from other domains). While not a comprehensive survey, it describes the state of the art, with a particular focus on new tasks and methods developed over the past few years. It also identifies key barriers between these remarkable tech- nical advances and the practical realities of implementation at health systems and in industry. 1 © 2021 by the author(s). Distributed under a Creative Commons CC BY license.
    [Show full text]