ICFA Seminars CERN Geneva Wednesday, Oct. 5, 2011

Plasma Acceleration

ToshikiG. Mourou Ta, jima LMU and MPQ, Garching, Germany

AkAcknowl ldedgmen ts for CllbCollabora tion and a didvice: GMG. Mourou, WLW. Leemans, KNkjiK. Nakajima, KHK. Homma, DHbD. Habs, I. Ko C.. Barty, P. Chomaz, D. Payne, H. Videau, P. Martin, V. Malka, F. Krausz, T. Esirkepov, S. Bulanov, M. Kando, W. Sandner, A. Suzuki, M. Teshima,, J. Chambaret, E. Esarey, R. Assmann, R. Heuer, A. Caldwell, S. Karsch, F. Gruener, M. Zepf, M. Somekh, E. Desurvire, D. Normand, J. Nilsson, W. Chou, F. Takasaki, M. Nozaki, KYkK. Yokoya, D DP. Payne, SChttS. Chattopa dhyay, , AChA. Chao, PBltP. Bolton, EEE. Esarey, MDM. Downer, CShC. Schroe der, CJC. Jos hiPhi, P. Muggli, J.P. Koutchouk, K. Ueda, Y. Kato, E. Goulielmakis, X. Q. Yan, J. E. Chen, R. Li, J. Rossbach, A. Ringwald, E. Elsen, H. Ruhl, T. Ostermayr, S. Petrovic, C. Klier, B. Altschul, Y. K. Kim, M. Spiro, L. Cifarelli, A. Seryi, A.1 Sergeev, A. Litvak、A. Hill boiled vacuum ←Schwinger field

LILIZEST relativistic ions

relativistic

←Keldysh field

atoms

Leap in Intensity Relativistic nonlinearity under intense laser (relativistic charged particle bunch does similar)

Ponderomotove force arising from v x B/c ↓ a) Classical optics : v<>1: δz>>z >> δx

eA eE  a  0  0 0 mc2 mc 2

2 nonlinear δz~ao

linear δx~ao Wakefield ← relativistic nonlinearity All particles in the medium participate = collective phenomenon

Kelvin wake

Maldacena (string theory) method: QCD wake (Chesler/Yaffe 2008) No wave breaks and wake peaks at v≈c Wave breaks at v<c [Laser (LWFA) as well as charged beam excite wakefield] Hokusai

← relativity

regularizes Maldacena

(Plasma physics vs. (The density cusps. String theory) Cusp singularity) Responding to Suzuki’ s Challenge New Paradigm: 1000 fold leap

PeV

Leptogenesis SUSY breaking

Extra dimension Dark matter Supersymmetry

TeV

Atsu to Suzu ki: Standard Model Quarks KEK Director General, Leptons ICFA Chair Suzuki (2008) ‘When can we reach PeV ?’: one of Suzuki Challenges 1015

1014

1013

ILC e-e+ colliders

(Suzuki,2008)

plasma accelerator experiments

2030 2040 2050 2060 09/3/9 6 V. Yakimenko (BNL) and R. Ischebeck (SLAC), AAC2006 Summary report of WG4 Accelerator Evolution of Accelerators and their Possibilities (Suzuki,2008)

Ultra‐High Voltage STEM E=40 MV/m with Superconducting RF cavity 2020s

ILC 2.5-5 GeV ERL

Superconducting L -band linac E=200 MV/m

2030s Decelerating structure mm waves EthEarth Two-beam LC Space debris

Earth-based space debris radar E=10 GV/m 10cm‐10GeV Plasma Channel Accelerator 2040s Table-top high energy Laser-plasma LC 09/3/9 accelerator 7 Brief History of ICUIL – ICFA Joint Effort – ICUIL Chair sounded on A. Wagner , Chair ICFA, and Suzuki , incoming Chair, of a common interest in laser driven acceleration (Nov. 2008) – Leemans appointed (November 2008) to lay groundwork for joint standing committee of ICUIL – ICFA GA invited Tajima for presentation by ICUIL and endorsed initiation of joint efforts (Feb. 13, 2009) – ICFA GA endorsed Joint Task Force (Aug. 2009) – Joint Task Force formed of ICFA and ICUIL members, W. Leemans, Chair (Sept, 2009) – First Workshop by Joint Task Force held @ GSI, Darmstadt (April, 2010) – Report to ICFA GA (July, 2010) and ICUIL GA (Sept, 2010) on the findings – ‘Bridgelab Symposium’ at L’Orme (Jan., 2011) – EuroNNAc Workshop at CERN (coordinator) (May, 2011) –2nd ICFA-ICUIL Joint Task Force Workshop at LBL (Sept. 2011) – FtifFormation of IZEST (Sep t., 2011) – Report to this ICFA Seminars on Plasma Acceleration (Oct. 2011) 9 ______

Density scalings for LWFA collider low density operation (Nakajima, PR ST AB (Nakajima, PR 2011) ST Fiber (vs . Bulk)

• High Gain fiber amplifiers allow ~ 40% total plug-to- optical output efficiency • Single mode fiber amplifier have reached multi-kW optical power. • large bandwidth (100fs) • immune against thermo- optical probl ems • excellent beam quality • efficient, diode-pumped operation •higggpgh single pass gain • mass-produced at low cost.

(G. Mourou) Neutrino speeding faster than c ? (OPERA collaboration, 2011)

microsec rise time vs. ns advance time: room for a large error T. Adams ↓ ( OPERA) IZEST initiative: LWFA with RPA (Zheng et al. 2011)

20 TVTeV prot on accel erat tded over cm 11 fs pulse, far narrower rise time

11 TeV proton acceleration by LWFA

early Radiation Pressure → La ter se tting up wakfildkefield High Intensity regime Acceleration of ions I = 1023 W/cm2 (using IZEST type laser)

2 2 Ε i = (1/6) a0 (nc /ne) mc 0.5TeV over ↓ saturation length of 1cm 100fs proton pulse ↓ Can we use this to test with sharply pulsed ↓ ions superluminous neutrinos?

↑ elec Zheng et al., 2011 stable LWFA of protons Wakefield toward extreme (PeV) energy: Electrons (TeV /stage) n 22 2 22 cr (when 1D theory applies) E  22mca0 0 ph  mca0 0  , ne 107  

) 106 1 TeV VV In order to avoid wavebreak, 105 1/2 a0 < γph , 104 ergy (Me nn where 3 10 1 GeV ←theoretical 1/2 102 γph = (ncr / ne ) ←experimental lectron e 1 EE 10

100 1017 1018 1019 1020 Plasma density (-3cm) Adopt:

2 2 n NIF laser (3MJ) cr 1 ncr Lad  p 0  , L   a ,  n p p 0    e  3 ne → 07PV0.7PeV dephasing length pump depletion length (Tajima, Kando, Teshima, 2011) γ-ray signal from primordial GRB (Abdo, High energy astrophysics

et al,200 c(()E): Lorentz violation? Observation of primordial Gamma Ray Bursts (GRB) 9) (limit is pushed up ← close to Planck mass) lo w er ener g

y ↓

high LWFA PeV γ (from e-) can explore this

e with control r → Feel vacuum texture: PeV energy γ needs fs to as metrology

Laser acceleration → controlled laboratory test to see quantum gravity texture

on photon propagation (Special Theory of Relativity: c0)

Coarser, lower energy texture

c < c0

Finer, higggyher energy texture

← (0.1PeV) PeV γ (converted from e- ) 1km ←(1PeV : fs behind) fs/as metrology of PeV γ Arrivals γ-triggered CEP laser goal-line

(Tajima et al. PTP, 2011)

High energy γ- induced Schwinger breakdown (Nishishov, 1964, Narozhny, 1968) CEP phase sensitive - acceleration Attosecond electron streaking γ- energy tagging possible

Goulielmakis et al. @MPQ(2008) Extreme High Energy and Synchrotron Radiation E > 30TeV: untested territory for Lorentz invariance

(B. Altschul, 2008)

Synchrotron radiation 17 ↑ Lorentz violating term radiation oan of Domains Domains

Cosmological observation

Log10(System Size) [cm]

of Laser physical hscllaws physical of lawshere Evading detections Galaxy Horizon fits thegapinghole in searchofunknownfields: t/ k /d tt k d ar

laws k ma Sun ELI tt er E /d Schwinger ar proton Log k energy 10 (Energy Density) [g/cm RHIC LHC Homma , Habs LC 3 ] , Ta collider High energy j ima ( 2011 ) 18 Beyond photon-photon interaction in QED 2 Heisenberg-Euler 1   2 ~  2 LQED  4 [4(F F )  7(F F ) ] 360 m 

~   F F  F F QCD and low-mass scalar  and pseudoscalar  may change 4 : 7

Resonance in quasi-parallel collisions in low cms energy

If MM M~MPlanck , Dark Energy Quantum anomaly  gM1F F  √g √g  M-1 M-1 QCD-instanton, Dark Matter √g mediating g √  mass m 1 ~ gM F F

Y. Fujii and K. Homma Prog. Theo. Phys.19 K.Homma, D.Habs, T.Tajima Appl. Phys. B Degenerate Four-Four-Wave Mixing (DFWM) Laser-induced nonlinear optics in vacuum (cf. Nonlinear optics in crystal)

Coh er en t decay in to 3ω can be in duced by fr equen cy-mixing      +z w0 3ω=2+2-1

Compare with ‘shine through the wall’ approach. ↓    Enhances signal by large amount Y. Fujii and K.Homma Prog. Theo. Phys.  2 20 K.Homma, D.Habs, T.Tajima N 3  N 2 N 1 /  Appl. Phys. B (2011) High Field road to unknown fields: dark matter and dark energy SHG 200J 15fs GeV] //

/M [1 DFWM QCD axion (Dark matter)

gg 200J 15fs DFWM

Log 200J 200J 1.5ns 15fs(induce) 200J 1.5ns(induce)

K. Homma @ Bucharest in ELI-NP workshopp, on 11 Mar, 2011 Gravitational Coupling(Dark Energy)

log m [eV] 21 K.Homma, D.Habs, T.Tajima (2011) IZEST International Center for ZttZetta-EttSidThlExawatt Science and Technology

* Highest intensity using existing / near future lasers with the world brainpower * TeV (ade)eegyote,(and PeV) energy frontier, wi th n on-colli der par adi gm (such as Lorentz invariance check) * High field approach (as opposed to high momentum) of fundamental physics * Works with ICUIL and ICFA, in a shorter timeline than a generation

Under the Aegis of CEA, Ecole Polytechnique and Ministry of Research and Education22 Conclusions • Bridge between accelerator and laser communities necessary and ongoing (ICFA-ICUIL Joint Task Force) • Collider physics requirements: == low density operation of LWFA suggested • High efficient, high average power driver laser technology: ICAN Project (CERN, Fermi, KEK collaborating) • Non-collider paradigm: Energy frontier with attosecond precision w/ a few shots e. g. Lorentz invariance test (in TeV and PeV) • High field science approach: coherent production of new fields : dark matter; dark energy

IZEST promotes this science in response to Suzuki’s challenge in collaboration with ICFA 23