Plasma Acceleration
Total Page:16
File Type:pdf, Size:1020Kb
ICFA Seminars CERN Geneva Wednesday, Oct. 5, 2011 Plasma Acceleration ToshikiG. Mourou Ta, jima LMU and MPQ, Garching, Germany AkAcknow ldledgmen ts for CllbCollabora tion and a didvice: GMG. Mourou, WLW. Leemans, KNkjiK. Nakajima, KHK. Homma, DHbD. Habs, I. Ko C.. Barty, P. Chomaz, D. Payne, H. Videau, P. Martin, V. Malka, F. Krausz, T. Esirkepov, S. Bulanov, M. Kando, W. Sandner, A. Suzuki, M. Teshima,, J. Chambaret, E. Esarey, R. Assmann, R. Heuer, A. Caldwell, S. Karsch, F. Gruener, M. Zepf, M. Somekh, E. Desurvire, D. Normand, J. Nilsson, W. Chou, F. Takasaki, M. Nozaki, KYkK. Yokoya, DPD. Payne, SChttS. Chattopa dhyay, , AChA. Chao, PBltP. Bolton, EEE. Esarey, MDM. Downer, CShC. Schroe der, CJC. Jos hiPhi, P. Muggli, J.P. Koutchouk, K. Ueda, Y. Kato, E. Goulielmakis, X. Q. Yan, J. E. Chen, R. Li, J. Rossbach, A. Ringwald, E. Elsen, H. Ruhl, T. Ostermayr, S. Petrovic, C. Klier, B. Altschul, Y. K. Kim, M. Spiro, L. Cifarelli, A. Seryi, A.1 Sergeev, A. Litvak、A. Hill boiled vacuum ←Schwinger field LILIZEST relativistic ions relativistic electrons plasma ←Keldysh field atoms Leap in Laser Intensity Relativistic nonlinearity under intense laser (relativistic charged particle bunch does similar) Ponderomotove force arising from v x B/c ↓ a) Classical optics : v<<c, b) Relativistic optics: v~c a <<1: δx only 0 a0>>1: δz>>z >> δx eA eE a 0 0 0 mc2 mc 2 2 nonlinear δz~ao linear δx~ao Wakefield ← relativistic nonlinearity All particles in the medium participate = collective phenomenon Kelvin wake Maldacena (string theory) method: QCD wake (Chesler/Yaffe 2008) No wave breaks and wake peaks at v≈c Wave breaks at v<c [Laser (LWFA) as well as charged beam excite wakefield] Hokusai ← relativity regularizes Maldacena (Plasma physics vs. (The density cusps. String theory) Cusp singularity) Responding to Suzuki’ s Challenge New Paradigm: 1000 fold leap PeV Leptogenesis SUSY breaking Extra dimension Dark matter Supersymmetry TeV Atsu to Suzu ki: Standard Model Quarks KEK Director General, Leptons ICFA Chair Suzuki (2008) ‘When can we reach PeV ?’: one of Suzuki Challenges 1015 1014 1013 ILC e-e+ colliders (Suzuki,2008) plasma accelerator experiments 2030 2040 2050 2060 09/3/9 6 V. Yakimenko (BNL) and R. Ischebeck (SLAC), AAC2006 Summary report of WG4 Accelerator Evolution of Accelerators and their Possibilities (Suzuki,2008) Ultra‐High Voltage STEM E=40 MV/m with Superconducting RF cavity 2020s ILC 2.5-5 GeV ERL Superconducting L -band linac E=200 MV/m 2030s Decelerating structure mm waves EthEarth Two-beam LC Space debris Earth-based space debris radar E=10 GV/m 10cm‐10GeV Plasma Channel Accelerator 2040s Table-top high energy Laser-plasma LC 09/3/9 accelerator 7 Brief History of ICUIL – ICFA Joint Effort – ICUIL Chair sounded on A. Wagner , Chair ICFA, and Suzuki , incoming Chair, of a common interest in laser driven acceleration (Nov. 2008) – Leemans appointed (November 2008) to lay groundwork for joint standing committee of ICUIL – ICFA GA invited Tajima for presentation by ICUIL and endorsed initiation of joint efforts (Feb. 13, 2009) – ICFA GA endorsed Joint Task Force (Aug. 2009) – Joint Task Force formed of ICFA and ICUIL members, W. Leemans, Chair (Sept, 2009) – First Workshop by Joint Task Force held @ GSI, Darmstadt (April, 2010) – Report to ICFA GA (July, 2010) and ICUIL GA (Sept, 2010) on the findings – ‘Bridgelab Symposium’ at L’Orme (Jan., 2011) – EuroNNAc Workshop at CERN (coordinator) (May, 2011) –2nd ICFA-ICUIL Joint Task Force Workshop at LBL (Sept. 2011) – FtifFormation of IZEST (Sep t., 2011) – Report to this ICFA Seminars on Plasma Acceleration (Oct. 2011) 9 _____ _________________________ ____ ___________________________ _________________________________ _____ Density scalings for LWFA collider low density operation (Nakajima, PR ST AB (Nakajima, PR 2011) ST Fiber (vs . Bulk) Lasers • High Gain fiber amplifiers allow ~ 40% total plug-to- optical output efficiency • Single mode fiber amplifier have reached multi-kW optical power. • large bandwidth (100fs) • immune against thermo- optical probl ems • excellent beam quality • efficient, diode-pumped operation •higggpgh single pass gain • mass-produced at low cost. (G. Mourou) Neutrino speeding faster than c ? (OPERA collaboration, 2011) microsec rise time vs. ns advance time: room for a large error T. Adams T. ↓ ( OPERA) IZEST initiative: LWFA with RPA (Zheng et al. 2011) 20 TVTeV pro ton acce lerat tded over cm 11 fs pulse, far narrower rise time 11 TeV proton acceleration by LWFA early Radiation Pressure → La ter se tting up wakfildkefield High Intensity regime Acceleration of ions I = 1023 W/cm2 (using IZEST type laser) 2 2 Ε i = (1/6) a0 (nc /ne) mc 0.5TeV over ↓ saturation length of 1cm 100fs proton pulse ↓ Can we use this to test with sharply pulsed ↓ ions superluminous neutrinos? ↑ elec Zheng et al., 2011 stable LWFA of protons Wakefield toward extreme (PeV) energy: Electrons (TeV /stage) n 22 2 22 cr (when 1D theory applies) E 22mca0 0 ph mca0 0 , ne 107 ) 106 1 TeV VV In order to avoid wavebreak, 105 1/2 a0 < γph , 104 ergy (Me nn where 3 10 1 GeV ←theoretical 1/2 102 γph = (ncr / ne ) ←experimental lectron e 1 EE 10 100 1017 1018 1019 1020 Plasma density (-3cm) Adopt: 2 2 n NIF laser (3MJ) cr 1 ncr Lad p 0 , L a , n p p 0 e 3 ne → 07PV0.7PeV dephasing length pump depletion length (Tajima, Kando, Teshima, 2011) γ-ray signal from primordial GRB (Abdo, High energy astrophysics et al,200 c(()E): Lorentz violation? Observation of primordial Gamma Ray Bursts (GRB) 9) (limit is pushed up ← close to Planck mass) lo w er ener g y ↓ high LWFA PeV γ (from e-) can explore this e with control r → Feel vacuum texture: PeV energy γ needs fs to as metrology Laser acceleration → controlled laboratory test to see quantum gravity texture on photon propagation (Special Theory of Relativity: c0) Coarser, lower energy texture c < c0 Finer, higggyher energy texture ← (0. 1PeV) PeV γ (converted from e- ) 1km ←(1PeV : fs behind) fs/as metrology of PeV γ Arrivals γ-triggered CEP laser goal-line (Tajima et al. PTP, 2011) High energy γ- induced Schwinger breakdown (Nishishov, 1964, Narozhny, 1968) CEP phase sensitive electron-positron acceleration Attosecond electron streaking γ- energy tagging possible Goulielmakis et al. @MPQ(2008) Extreme High Energy and Synchrotron Radiation E > 30TeV: untested territory for Lorentz invariance (B. Altschul, 2008) Synchrotron radiation 17 ↑ Lorentz violating term radiation Laser fits the gaping hole in search of unknown fields: n ical oo gg dar k ma tter /dar k energy molo ervati ] ss ss mm Horizon Co ob Galaxy Size) [c mm Sun (Syste 10 g oo L Evading detections of laws here ESchwinger ELI RHIC proton LHC LC Log (Energy Density) [g/cm3] 10 High energy Domains of physical laws collider 18 Homma, Habs, Tajima (2011) Beyond photon-photon interaction in QED 2 Heisenberg-Euler 1 2 ~ 2 LQED 4 [4(F F ) 7(F F ) ] 360 m ~ F F F F QCD and low-mass scalar and pseudoscalar may change 4 : 7 Resonance in quasi-parallel collisions in low cms energy If MM M~MPlanc k, Dark Energy Quantum anomaly gM1FF √g √g M-1 M-1 QCD-instanton, Dark Matter √g mediating √g mass m 1 ~ gM F F Y. Fujii and K. Homma Prog. Theo. Phys.19 K.Homma, D.Habs, T.Tajima Appl. Phys. B Degenerate Four-Four-Wave Mixing (DFWM) Laser-induced nonlinear optics in vacuum (cf. Nonlinear optics in crystal) Coh er en t decay in to 3ω can be in duced by fr equen cy-mixing +z w0 3ω=2+2-1 Compare with ‘shine through the wall’ approach. ↓ Enhances signal by large amount Y. Fujii and K.Homma Prog. Theo. Phys. 2 20 K.Homma, D.Habs, T.Tajima N 3 N 2 N 1 / Appl. Phys. B (2011) High Field road to unknown fields: dark matter and dark energy SHG 200J 15fs GeV] // /M [1 DFWM QCD axion (Dark matter) gg 200J 15fs DFWM Log 200J 200J 1.5ns 15fs(induce) 200J 1.5ns(induce) K. Homma @ Bucharest in ELI-NP workshopp, on 11 Mar, 2011 Gravitational Coupling(Dark Energy) log m [eV] 21 K.Homma, D.Habs, T.Tajima (2011) IZEST International Center for ZttZetta-EttSidThlExawatt Science and Technology * Highest intensity using existing / near future lasers with the world brainpower * TeV (ade)eegyote,(and PeV) energy frontier, wi th n on-colli der par adi gm (such as Lorentz invariance check) * High field approach (as opposed to high momentum) of fundamental physics * Works with ICUIL and ICFA, in a shorter timeline than a generation Under the Aegis of CEA, Ecole Polytechnique and Ministry of Research and Education22 Conclusions • Bridge between accelerator and laser communities necessary and ongoing (ICFA-ICUIL Joint Task Force) • Collider physics requirements: == low density operation of LWFA suggested • High efficient, high average power driver laser technology: ICAN Project (CERN, Fermi, KEK collaborating) • Non-collider paradigm: Energy frontier with attosecond precision w/ a few shots e. g. Lorentz invariance test (in TeV and PeV) • High field science approach: coherent production of new fields : dark matter; dark energy IZEST promotes this science in response to Suzuki’s challenge in collaboration with ICFA 23.