Data Warehouse Offload to Google Bigquery
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BEST PRACTICE GUIDE for CLOUD and AS-A-SERVICE PROCUREMENTS Executive Summary 1 Introduction
BEST PRACTICE GUIDE FOR CLOUD AND AS-A-SERVICE PROCUREMENTS Executive Summary 1 Introduction Specific Models and Understanding Cloud Procurement Service Models Data EXECUTIVE SUMMARY Breach Notification Personnel Security While private companies rapidly move systems and Vendors share blame, too. Lots of cloud providers are new to Encryption applications to the cloud, public agencies still struggle to adopt public sector business, having grown up selling to consumers Audits Operations hosted services that could save money and provide better value. and private firms. These companies don’t always understand Hybrid Cloud Environments legitimate demands that make government contracting Preparation for Migrating Yet states and localities have much to gain from the different from selling to other markets. Failure to accommodate Workloads to the Cloud technology industry’s “as-a-service” revolution. Many unique government requirements can be a deal-breaker for jurisdictions face huge legacy system replacement challenges. agencies charged with protecting the public’s interests. Conclusion They’re also under pressure to provide new classes of digital services. The cloud can offer a better path toward All too often, government and industry aren’t on the same page Workgroup Members modernization — there’s no hardware to buy, you’re always when it comes to cloud services. They may not even speak the and Contributors on the latest version of the software and system capacity same language. can be adjusted almost instantly based on your needs. Appendix 1 Bridging the Gap Model Terms and Conditions Templates So why is government lagging behind? The fact is that These pressures led us to release the first version of this guide Software-as-a-Service governments often struggle to buy cloud-based services because two years ago. -
Google Cloud Issue Summary Multiple Products - 2020-08-19 All Dates/Times Relative to US/Pacific
Google Cloud Issue Summary Multiple Products - 2020-08-19 All dates/times relative to US/Pacific Starting on August 19, 2020, from 20:55 to 03:30, multiple G Suite and Google Cloud Platform products experienced errors, unavailability, and delivery delays. Most of these issues involved creating, uploading, copying, or delivering content. The total incident duration was 6 hours and 35 minutes, though the impact period differed between products, and impact was mitigated earlier for most users and services. We understand that this issue has impacted our valued customers and users, and we apologize to those who were affected. DETAILED DESCRIPTION OF IMPACT Starting on August 19, 2020, from 20:55 to 03:30, Google Cloud services exhibited the following issues: ● Gmail: The Gmail service was unavailable for some users, and email delivery was delayed. About 0.73% of Gmail users (both consumer and G Suite) active within the preceding seven days experienced 3 or more availability errors during the outage period. G Suite customers accounted for 27% of affected Gmail users. Additionally, some users experienced errors when adding attachments to messages. Impact on Gmail was mitigated by 03:30, and all messages delayed by this incident have been delivered. ● Drive: Some Google Drive users experienced errors and elevated latency. Approximately 1.5% of Drive users (both consumer and G Suite) active within the preceding 24 hours experienced 3 or more errors during the outage period. ● Docs and Editors: Some Google Docs users experienced issues with image creation actions (for example, uploading an image, copying a document with an image, or using a template with images). -
Elliptic Curve Cryptography in Cloud Computing Security
Elliptic curve cryptography in cloud computing security Manu Gopinathan ([email protected]) Øyvind Nygard ([email protected]) Kjetil Aune([email protected]) December 1st, 2015 1 Abstract Cloud computing is a technological advancement that has been growing swiftly during the last decade. In simple terms, cloud computing is a technology that enables shared, remote, on-demand and ubiquitous access to services through the Internet. It enables consumers to access applications and services that reside on remote servers, without having to allocate large amounts of storage space on their own computer and without the need for extensive compatibility configurations. Many such cloud applications provide services that are meant to handle sensitive user data and thus the protection of this data in terms of access and integrity is of major concern. Space- and time complexity of encryption algorithms can prove to be imperative when it comes to system performance. In this paper we will briefly present how elliptic curve cryptography (EEC) works, and then describe the advantages of it and how it can be used as an encryption solution to security related issues in cloud computing. 2 Introduction In this section we will briefly describe the notion of cloud computing to aid us in the discussion of ECC in cloud computing later. According to the National Institute of Standards and Technology (NIST), essential characteristics for a service based on the cloud computing model are [1]: 1. On-demand self-service: The consumer can provision service capabilities, such as server time and network storage, without actively interacting with the service provider. 2. -
Apigee X Migration Offering
Apigee X Migration Offering Overview Today, enterprises on their digital transformation journeys are striving for “Digital Excellence” to meet new digital demands. To achieve this, they are looking to accelerate their journeys to the cloud and revamp their API strategies. Businesses are looking to build APIs that can operate anywhere to provide new and seamless cus- tomer experiences quickly and securely. In February 2021, Google announced the launch of the new version of the cloud API management platform Apigee called Apigee X. It will provide enterprises with a high performing, reliable, and global digital transformation platform that drives success with digital excellence. Apigee X inte- grates deeply with Google Cloud Platform offerings to provide improved performance, scalability, controls and AI powered automation & security that clients need to provide un-parallel customer experiences. Partnerships Fresh Gravity is an official partner of Google Cloud and has deep experience in implementing GCP products like Apigee/Hybrid, Anthos, GKE, Cloud Run, Cloud CDN, Appsheet, BigQuery, Cloud Armor and others. Apigee X Value Proposition Apigee X provides several benefits to clients for them to consider migrating from their existing Apigee Edge platform, whether on-premise or on the cloud, to better manage their APIs. Enhanced customer experience through global reach, better performance, scalability and predictability • Global reach for multi-region setup, distributed caching, scaling, and peak traffic support • Managed autoscaling for runtime instance ingress as well as environments independently based on API traffic • AI-powered automation and ML capabilities help to autonomously identify anomalies, predict traffic for peak seasons, and ensure APIs adhere to compliance requirements. -
Google Cloud Identity Services
INTRODUCING Google Cloud Identity Services One account. All of Google Enter your email Next Enterprise identity made easy A robust and secure identity model is the foundation for enterprise success. Google Cloud’s identity services bring user lifecycle management, directory services, account security, single sign-on, mobile device management and more in a simple integrated solution. Introduction Millions of businesses and schools rely on Google Cloud’s identity services every day when they sign in to products like Google Drive and Google Cloud Platform (GCP). They offer core identity services that make it simple, secure and reliable for users to log in and for administrators to manage usage across the organization. These core features fall into six main areas, where we focus. • User Lifecyle Management • Single sign-on (SSO) • Directory • Reporting & Analytics • Account Security • Endpoint Management User Lifecyle Management Endpoint Directory Management Google Identity Account Security Reporting & Analytics SSO “Google provides business-critical solutions like serving as the central secure access point for cloud apps, while also providing infrastructure for these services like the identity directory.” -Justin Slaten, Manager, Enterprise Technology & Client Systems at Netflix User Lifecycle Management Directory Users are the core of any identity platform, and Google Cloud identity services make it easy the ability to manage access when they join, move to manage users and groups. Everything from within, or leave an organization is important to setting permissions to resetting passwords is administrators. Google Cloud identity services in one location so administrators can quickly make user lifecycle management easy with complete common tasks. Individual Google the unified Google Admin console and APIs. -
Enhancing Bittorrent-Like Peer-To-Peer Content Distribution with Cloud Computing
ENHANCING BITTORRENT-LIKE PEER-TO-PEER CONTENT DISTRIBUTION WITH CLOUD COMPUTING A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Zhiyuan Peng IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Haiyang Wang November 2018 © Zhiyuan Peng 2018 Abstract BitTorrent is the most popular P2P file sharing and distribution application. However, the classic BitTorrent protocol favors peers with large upload bandwidth. Certain peers may experience poor download performance due to the disparity between users’ upload/download bandwidth. The major objective of this study is to improve the download performance of BitTorrent users who have limited upload bandwidth. To achieve this goal, a modified peer selection algorithm and a cloud assisted P2P network system is proposed in this study. In this system, we dynamically create additional peers on cloud that are dedicated to boost the download speed of the requested user. i Contents Abstract ............................................................................................................................................. i List of Figures ................................................................................................................................ iv 1 Introduction .............................................................................................................................. 1 2 Background ............................................................................................................................. -
Performance Efficiency Pillar
Performance Efficiency Pillar AWS Well-Architected Framework Performance Efficiency Pillar AWS Well-Architected Framework Performance Efficiency Pillar: AWS Well-Architected Framework Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved. Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon. Performance Efficiency Pillar AWS Well-Architected Framework Table of Contents Abstract and Introduction ................................................................................................................... 1 Abstract .................................................................................................................................... 1 Introduction .............................................................................................................................. 1 Performance Efficiency ....................................................................................................................... 2 Design Principles ........................................................................................................................ 2 Definition ................................................................................................................................. -
Trusting Your Data with Google Cloud Platform
Trusting your data with Google Cloud Platform At Google Cloud we’ve set a high bar for what it means to host, serve, and protect customer data. Security and data protection are fundamental to how we design and build our products. We start from the fundamental premise that Google Cloud Platform (GCP) customers own their data and control how it is used. The data a customer stores and manages on GCP systems is only used to provide that customer with GCP services and to make GCP services work better for them, and for no other purpose. Not advertising, not for anything else. Period. We have robust internal controls and auditing to protect against insider access to customer data. This includes providing our customers with near real-time logs of Google administrator access on GCP; GCP is the only major cloud to provide this level of access transparency. In addition to continuous security monitoring, all customer data stored in GCP is encrypted at rest and in transit by default. Customers can also choose to manage their own encryption keys using GCP’s Cloud Key Management Service, a feature commonly referred to as “customer-managed encryption keys (CMEK).” We also enable our customers to monitor their own account activity. We provide reports and logs that make it easy for a customer’s administrator to examine potential security risks, track access, analyze administrator activity, and much more. Administrators in your organization can also leverage Cloud Data Loss Prevention (DLP) capabilities to protect sensitive information. DLP adds a layer of protection to identify, redact, and prevent sensitive or private information from leaking outside of an organization. -
Paas Solutions Evaluation
PaaS solutions evaluation August 2014 Author: Sofia Danko Supervisors: Giacomo Tenaglia Artur Wiecek CERN openlab Summer Student Report 2014 CERN openlab Summer Student Report 2014 Project Specification OpenShift Origin is an open source software developed mainly by Red Hat to provide a multi- language PaaS. It is meant to allow developers to build and deploy their applications in a uniform way, reducing the configuration and management effort required on the administration side. The aim of the project is to investigate how to deploy OpenShift Origin at CERN, and to which extent it could be integrated with CERN "Middleware on Demand" service. The student will be exposed to modern cloud computing concepts such as PaaS, and will work closely with the IT middleware experts in order to evaluate how to address service needs with a focus on deployment in production. Some of the tools that are going to be heavily used are Puppet and Openstack to integrate with the IT infrastructure. CERN openlab Summer Student Report 2014 Abstract The report is a brief summary of Platform as a Service (PaaS) solutions evaluation including investigation the current situation at CERN and Services on Demand provision, homemade solutions, external market analysis and some information about PaaS deployment process. This first part of the report is devoted to the current status of the process of deployment OpenShift Origin at existing infrastructure at CERN, as well as specification of the common issues and restrictions that were found during this process using different machines for test. Furthermore, the following open source software solutions have been proposed for the investigation of possible PaaS provision at CERN: OpenShift Online; Cloud Foundry; Deis; Paasmaster; Cloudify; Stackato; WSO2 Stratos. -
Getting Started with Google Cloud Platform
Harvard AP275 Computational Design of Materials Spring 2018 Boris Kozinsky Getting started with Google Cloud Platform A virtual machine image containing Python3 and compiled LAMMPS and Quantum Espresso codes are available for our course on the Google Cloud Platform (GCP). Below are instructions on how to get access and start using these resources. Request a coupon code: Google has generously granted a number of free credits for using GCP Compute Engines. Here is the URL you will need to access in order to request a Google Cloud Platform coupon. You will be asked to provide your school email address and name. An email will be sent to you to confirm these details before a coupon code is sent to you. Student Coupon Retrieval Link • You will be asked for a name and email address, which needs to match the domain (@harvard.edu or @mit.edu). A confirmation email will be sent to you with a coupon code. • You can only request ONE code per unique email address. If you run out of computational resources, Google will grant more coupons! If you don’t have a Gmail account, please get one. Harvard is a subscriber to G Suite, so access should work with your @g.harvard.edu email and these were added already to the GCP project. If you prefer to use your personal Gmail login, send it to me. Once you have your google account, you can log in and go to the website below to redeem the coupon. This will allow you to set up your GCP billing account. -
Digital Media Asset Management and Sharing
Digital Media Asset Management and Sharing Introduction Digital media is one of the fastest growing areas on the internet. According to a market study by Informa Telecoms & Media conducted in 2012, the global 1. online video market only, will reach $37 billion in 2017¹. Other common media OTT Video Revenue Forecasts, types include images, music, and digital documents. One driving force for this 2011-2017, by Informa Telecoms phenomena growth is the popularity of feature rich mobile devices2, equipped & Media, with higher resolution cameras, bigger screens, and faster data connections. November 2012. This has led to a massive increase in media content production and con- sumption. Another driving force is the trend among many social networks to 2. incorporate media sharing as a core feature in their systems². Meanwhile, Key trends and Takeaways in Digital numerous startup companies are trying to build their own niche areas in Media Market, this market. by Abhay Paliwal, March 2012. This paper will use an example scenario to provide a technical deep-dive on how to use Google Cloud Platform to build a digital media asset management and sharing system. Example Scenario - Photofeed Photofeed, a fictitious start-up company, is interested in building a photo sharing application that allows users to upload and share photos with each other. This application also includes a social aspect and allows people to post comments about photos. Photofeed’s product team believes that in order for them to be competitive in this space, users must be able to upload, view, and edit photos quickly, securely and with great user experiences. -
Economic and Social Impacts of Google Cloud September 2018 Economic and Social Impacts of Google Cloud |
Economic and social impacts of Google Cloud September 2018 Economic and social impacts of Google Cloud | Contents Executive Summary 03 Introduction 10 Productivity impacts 15 Social and other impacts 29 Barriers to Cloud adoption and use 38 Policy actions to support Cloud adoption 42 Appendix 1. Country Sections 48 Appendix 2. Methodology 105 This final report (the “Final Report”) has been prepared by Deloitte Financial Advisory, S.L.U. (“Deloitte”) for Google in accordance with the contract with them dated 23rd February 2018 (“the Contract”) and on the basis of the scope and limitations set out below. The Final Report has been prepared solely for the purposes of assessment of the economic and social impacts of Google Cloud as set out in the Contract. It should not be used for any other purposes or in any other context, and Deloitte accepts no responsibility for its use in either regard. The Final Report is provided exclusively for Google’s use under the terms of the Contract. No party other than Google is entitled to rely on the Final Report for any purpose whatsoever and Deloitte accepts no responsibility or liability or duty of care to any party other than Google in respect of the Final Report and any of its contents. As set out in the Contract, the scope of our work has been limited by the time, information and explanations made available to us. The information contained in the Final Report has been obtained from Google and third party sources that are clearly referenced in the appropriate sections of the Final Report.