Micromorphology of Soils Micromorphology of Soils

Total Page:16

File Type:pdf, Size:1020Kb

Micromorphology of Soils Micromorphology of Soils MICROMORPHOLOGY OF SOILS MICROMORPHOLOGY OF SOILS E.A. FITZPATRICK Department oj Soil Science University oj Aberdeen, UK LONDON NEW YORK CHAPMAN AND HALL First published 1984 by Chapman and Hall Ltd 11 New Fetter Lane, London EC4P 4EE Published in the USA by Chapman and Hall 733 Third Avenue, New York, NY to017 © 1984 E.A. FitzPatrick Softcover reprint of the hardcover 1st edition 1984 ISBN-13: 978-94-010-8946-3 e-ISBN-13: 978-94-009-5544-8 DO I: 10.1007/978-94-009-5544-8 All rights reserved. No part of this book may be reprinted, or reproduced or utilized in any form or by any electronic, mechanical or other means now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the publisher. British Library Cataloguing in Publication Data FitzPatrick, E. A. Micromorphology of soils 1. Soils - Analysis I. Title 631.4'1 S593 Library of Congress Cataloging in Publication Data FitzPatrick, Ewart Adsil. Micromorphology of soils. Bibliography: p. Includes index. 1. Soil micromorphology. I. Title. S593.2.F58 1984 631.4 83-24002 Contents Preface page Xl Acknowledgements Xlll 1 Principles of thin section preparation 1 1.1 Choosing the size of the thin section 1 1.2 Collecting the sample 2 1.3 Removing water from the sample 2 1.4 Impregnating the sample 2 1.5 Lapping the impregnated sample 3 1.6 Polishing the impregnated sample 4 1.7 Grinding, lapping and polishing the 5 slide 2 Preparation ofpolished blocks and thin 6 sections ofsoils 2.1 Collection ofsamples ofsoft coherent 6 non-stony material 2.2 Collection ofsamples of hard material 9 2.3 Collecting loose friable surface 9 samples 2.4 Removal or replacement of water and 10 impregnation with Crystic resin 2.5 Transferring the specimen to the 10 impregnation mould V vi Contents 2.6 Removal of water 13 2.7 Impregnation 15 2.8 Sawing the impregnated block 21 2.9 Surface impregnation with Crystic 22 reSIn 2.10 Lapping the block 23 2.11 Polishing the block 29 2.12 Cleaning the polished block 31 2.13 Mounting the polished block 32 2.14 Labelling the slide 35 2.15 Cutting off the excess specimen 35 2.16 Machine grinding the specimen 35 2.17 Final lapping stages for the specimen 37 2.18 Polishing the specimen 42 2.19 Mounting the cover glass 42 2.20 Logitech machine systems for thin 43 section production 3 Examination ofthin sections and 51 polished blocks 3.1 Examination of thin sections and 51 polished blocks with the stereo- mIcroscope 3.2 Examination of thin sections with the 52 petrological microscope 3.3 The construction and use of the 52 petrological microscope 3.4 Properties of minerals determined 55 with the petrological microscope 4 Properties oflTIinerals in thin sections 66 4.1 Allophane 71 4.2 Amphiboles 71 4.3 Anatase 71 4.4 Antigorite - chrysotile 72 4.5 Apatite 72 4.6 Augite 73 4.7 Biotite 73 4.8 Calcite 75 4.9 Chalcedony 77 4.10 Chlorite 78 4.11 Clinozoisite 78 4.12 Diopside 79 4.13 Enstatite 79 4.14 Epidote 80 4.15 Feldspars 80 4.16 Ferric hydroxide 81 Contents vii 4.17 Garnet 81 4.18 Gibbsite 81 4.19 Goethite 83 4.20 Gypsum 83 4.21 Halite 84 4.22 Halloysite and metahalloysite 84 4.23 Hematite 85 4.24 Hornblende 86 4.25 Hypersthene 86 4.26 Ice 87 4.27 Iddingsite 87 4.28 Ilmenite 88 4.29 Jarosite 89 4.30 Kaolinite 89 4.31 Lepidocrocite 90 4.32 Magnetite 90 4.33 Manganese dioxide 91 4.34 Microcline 91 4.35 Montmorillonite 92 4.36 Muscovite 93 4.37 Olivine 93 4.38 Opal 94 4.39 Orthoclase 95 4.40 Plagioclases 95 4.41 Pyrite 96 4.42 Quartz 97 4.43 Rutile 98 4.44 Serpentine 98 4.45 Siderite 98 4.46 Titanite 99 4.47 Tourmaline 99 4.48 Tremolite - actinolite 99 4.49 Vermiculite 100 4.50 Volcanic glass 101 4.51 Zircon 101 5 Properties applicable to most features 102 seen in thin sections 5.1 Colour 102 5.2 Frequency 103 5.3 Prominence 114 5.4 Size 115 5.5 Shape 116 5.6 Roundness and sphericity 117 5.7 Surface characteristics 118 5.8 Boundaries 118 5.9 Distribution pattern 119 Vll1 Contents 5.10 Relationships with other features 120 5.11 Orientation 121 6 Fabric, structure and matrix 123 6.1 Fabric and structure 124 6.2 Matrix 128 6.3 Conclusions 134 7 Features present in thin sections 136 7.1 Fabric 138 7.2 Structure and pores 140 7.3 Passages - faunal and root 166 7.4 Faecal material 167 7.5 Organic materials 172 7.6 Rock fragments 179 7.7 Detrital grains 183 7.8 Particle size distribution 186 7.9 Fine material 187 7.10 Coatings 207 7.11 Clay plugs 230 7.12 Surface residues 230 7.13 Impregnated surfaces 232 7.14 Anisotropic surfaces - false coatings 233 7.15 Subsurface organizations and 233 accumulations 7.16 Secondary mineral material 234 7.17 Amorphous and microcrystalline 239 material 7.18 Segregations and concretions 239 7.19 Weathering features and products 244 7.20 Microorganisms 249 7.21 Soil crratics 253 7.22 Infillings and intergrowths 253 7.23 Other features 256 7.24 Features observed in polished blocks 256 8 Description ofthin sections and polished 258 blocks 8.1 Homogeneity and heterogeneity 258 8.2 Recognition ofindividuals 259 8.3 Recognition of patterns 260 8.4 n:scription ofindividuals and patterns 261 8.5 Quantification 261 8.6 Interpretation 261 8.7 Description of thin sections 262 8.8 Description of polished blocks 266 8.9 Reminder data of properties 267 Contents ix 8.10 Reminder data offeatures 270 9 Teaching micromorphology 278 9.1 Introductory course in thin section 278 morphology 9.2 Advanced course in thin section 279 morphology 9.3 Exercises 283 10 Photography 286 10.1 Photographing the whole specimen 286 using transmitted light 10.2 Photographing the whole specimen 287 using ultraviolet light 10.3 Photomicrography 287 10.4 Photography for pore identification 288 11 Ancillary techniques 291 11.1 Electron analyses 292 11.2 X-ray analysis of thin sections 294 11.3 Ion thinning 294 11.4 Low temperature ashing 294 11.5 Image analysis 297 11.6 Three-dimensional analysis 297 11.7 Polarization-interference contrast 298 examinations 11.8 Phase contrast 298 11.9 Fluorescence 299 11.10 Staining feldspars 299 11.11 Staining carbonates 302 11.12 Staining clay minerals 306 11.13 Staining microorganisms 306 11.14 Preparation of acetate peels 307 11.15 Removal of iron oxides from thin 308 sections 11.16 Autoradiographs ofimpregnated 311 blocks and thin sections 12 Applications 312 12.1 Agriculture 312 12.2 Archeology 317 12.3 Engineering 319 12.4 Geomorphology 321 12.5 Paleoclimatology 325 12.6 Pedology and paleopedology 325 12.7 Soil microbiology 328 12.8 Soil zoology 329 X Contents 13 The micromorphology of soils 331 APPENDIX 1 Health hazards 358 APPENDIX 2 Defects and faults in thin 360 sections and impregnated blocks APPENDIX 3 Detailed descriptions of 363 thin sections APPENDIX 4 Reminder data of properties 367 APPENDIX 5 Reminder data offeatures 371 Glossary 378 References 414 Index 427 The colour plate section appears between pages 210 and 211. Preface One of the first major studies of weathering and soil formation was made by Harrison (1933) who used thin sections in association with other procedures to study the transformation of minerals in different kinds of rock under the tropical conditions of Guyana. However, Kubiena (1938) is regarded as pioneering thin section studies of soils and during the last two decades there has been a rapid increase in the number of publications devoted almost exclusively to the study of soils in thin sections. In addition to the rather straightforward examinations with the polarizing microscope, thin section techniques are being linked with X-ray diffraction, X-ray microprobe, transmission and scanning electron microscopy, microbiological and other procedures to obtain a fuller insight into the composition and genesis of soils. Thus the study of thin sections of soils is now a major pedological technique for investigating small details in the nature, type and degree of organization of the soil fabric and structure. Thin sections reveal that particles of various sizes and composition react differently to pedological processes and become weathered or organized to form many specific patterns. This book is an attempt to give a comprehensive treatment of thin section studies of soils. Although primarily about the study of thin sections with optical microscopes a few transmission and scanning electron photomicro­ graphs are included to confirm the inferences based upon the studies made with the optical microscope. xi xii Preface This book is intended for honours students, postgraduate students, soil surveyors and similar workers. It is hoped that it will fulfil the following requirements: 1. Easy to be used and understood by students 2. To give information and methods of description for most features seen in thin sections of soils and related materials 3. To relate easily field with thin section data 4. Ultimately to lead to codifying the data for storage and computation Sometimes the value of thin sections studies is questioned. The value and need for thin sections are as follows: 1. To study and analyse the details of the soil fabric 2. To observe and analyse more fully the structure and porosity of the soil both natural and induced 3.
Recommended publications
  • Tillage and Soil Ecology: Partners for Sustainable Agriculture
    Soil & Tillage Research 111 (2010) 33–40 Contents lists available at ScienceDirect Soil & Tillage Research journal homepage: www.elsevier.com/locate/still Review Tillage and soil ecology: Partners for sustainable agriculture Jean Roger-Estrade a,b,*, Christel Anger b, Michel Bertrand b, Guy Richard c a AgroParisTech, UMR 211 INRA/AgroParisTech., Thiverval-Grignon, 78850, France b INRA, UMR 211 INRA/AgroParisTech. Thiverval-Grignon, 78850, France c INRA, UR 0272 Science du sol, Centre de recherche d’Orle´ans, Orle´ans, 45075, France ARTICLE INFO ABSTRACT Keywords: Much of the biodiversity of agroecosystems lies in the soil. The functions performed by soil biota have Tillage major direct and indirect effects on crop growth and quality, soil and residue-borne pests, diseases Soil ecology incidence, the quality of nutrient cycling and water transfer, and, thus, on the sustainability of crop Agroecosystems management systems. Farmers use tillage, consciously or inadvertently, to manage soil biodiversity. Soil biota Given the importance of soil biota, one of the key challenges in tillage research is understanding and No tillage Plowing predicting the effects of tillage on soil ecology, not only for assessments of the impact of tillage on soil organisms and functions, but also for the design of tillage systems to make the best use of soil biodiversity, particularly for crop protection. In this paper, we first address the complexity of soil ecosystems, the descriptions of which vary between studies, in terms of the size of organisms, the structure of food webs and functions. We then examine the impact of tillage on various groups of soil biota, outlining, through examples, the crucial effects of tillage on population dynamics and species diversity.
    [Show full text]
  • Soil As a Huge Laboratory for Microorganisms
    Research Article Agri Res & Tech: Open Access J Volume 22 Issue 4 - September 2019 Copyright © All rights are reserved by Mishra BB DOI: 10.19080/ARTOAJ.2019.22.556205 Soil as a Huge Laboratory for Microorganisms Sachidanand B1, Mitra NG1, Vinod Kumar1, Richa Roy2 and Mishra BB3* 1Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, India 2Department of Biotechnology, TNB College, India 3Haramaya University, Ethiopia Submission: June 24, 2019; Published: September 17, 2019 *Corresponding author: Mishra BB, Haramaya University, Ethiopia Abstract Biodiversity consisting of living organisms both plants and animals, constitute an important component of soil. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. One of the main threats to soil biodiversity occurred by soil environmental impacts and agricultural management. This review focuses on interactions relating how soil ecology (soil physical, chemical and biological properties) and soil management regime affect the microbial diversity in soil. We propose that the fact that in some situations the soil is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms (MOs) and soil. A conceptual framework, based on the relative strengths of the shaping forces exerted by soil versus the ecological behavior of MOs, is proposed. Plant-bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Symbiotic nitrogen (N2)-fixing bacteria include the cyanobacteria of the genera Rhizobium, Free-livingBradyrhizobium, soil bacteria Azorhizobium, play a vital Allorhizobium, role in plant Sinorhizobium growth, usually and referred Mesorhizobium.
    [Show full text]
  • Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision
    ES/ER/TM-126/R2 Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision This document has been approved by the East Tennessee Technology Park Technical Information Office for release to the public. Date: ES/ER/TM-126/R2 Toxicological Benchmarks for Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision R. A. Efroymson M. E. Will G. W. Suter II Date Issued—November 1997 Prepared for the U.S. Department of Energy Office of Environmental Management under budget and reporting code EW 20 LOCKHEED MARTIN ENERGY SYSTEMS, INC. managing the Environmental Management Activities at the East Tennessee Technology Park Oak Ridge Y-12 Plant Oak Ridge National Laboratory Paducah Gaseous Diffusion Plant Portsmouth Gaseous Diffusion Plant under contract DE-AC05-84OR21400 for the U.S. DEPARTMENT OF ENERGY PREFACE This report presents a standard method for deriving benchmarks for the purpose of “contaminant screening,” performed by comparing measured ambient concentrations of chemicals. The work was performed under Work Breakdown Structure 1.4.12.2.3.04.07.02 (Activity Data Sheet 8304). In addition, this report presents sets of data concerning the effects of chemicals in soil on invertebrates and soil microbial processes, benchmarks for chemicals potentially associated with United States Department of Energy sites, and literature describing the experiments from which data were drawn for benchmark derivation. iii ACKNOWLEDGMENTS The authors would like to thank Carla Gunderson and Art Stewart for their helpful reviews of the document. In addition, the authors would like to thank Christopher Evans and Alexander Wooten for conducting part of the literature review.
    [Show full text]
  • The Nature and Dynamics of Soil Organic Matter: Plant Inputs, Microbial Transformations, and Organic Matter Stabilization
    Soil Biology & Biochemistry 98 (2016) 109e126 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Review paper The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization Eldor A. Paul Natural Resource Ecology Laboratory and Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1499, USA article info abstract Article history: This review covers historical perspectives, the role of plant inputs, and the nature and dynamics of soil Received 19 November 2015 organic matter (SOM), often known as humus. Information on turnover of organic matter components, Received in revised form the role of microbial products, and modeling of SOM, and tracer research should help us to anticipate 31 March 2016 what future research may answer today's challenges. Our globe's most important natural resource is best Accepted 1 April 2016 studied relative to its chemistry, dynamics, matrix interactions, and microbial transformations. Humus has similar, worldwide characteristics, but varies with abiotic controls, soil type, vegetation inputs and composition, and the soil biota. It contains carbohydrates, proteins, lipids, phenol-aromatics, protein- Keywords: Soil organic matter derived and cyclic nitrogenous compounds, and some still unknown compounds. Protection of trans- 13C formed plant residues and microbial products occurs through spatial inaccessibility-resource availability, 14C aggregation of mineral and organic constituents, and interactions with sesquioxides, cations, silts, and Plant residue decomposition clays. Tracers that became available in the mid-20th century made the study of SOM dynamics possible. Soil carbon dynamics Carbon dating identified resistant, often mineral-associated, materials to be thousands of years old, 13 Humus especially at depth in the profile.
    [Show full text]
  • Soil Fauna: Key to New Carbon Models Authors
    SOIL Discuss., doi:10.5194/soil-2016-19, 2016 Manuscript under review for journal SOIL Published: 14 April 2016 c Author(s) 2016. CC-BY 3.0 License. 1 1 2 Soil fauna: key to new carbon models 3 4 Authors 5 6 Juliane Filser1*, Jack H. Faber2, Alexei V. Tiunov3, Lijbert Brussaard4, Jan Frouz5, 7 Gerlinde De Deyn4, Alexei V. Uvarov3, Matty P. Berg6, Patrick Lavelle7, Michel Loreau8, 8 Diana H. Wall9, Pascal Querner10, Herman Eijsackers11, Juan José Jiménez12 9 10 1Center for Environmental Research and Sustainable Technolgy, University of Bremen, General and Theoretical 11 Ecology, Leobener Str. – UFT, D-28359 Bremen, Germany. 12 email: [email protected] 13 * Corresponding author 14 15 2Alterra, Wageningen UR, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands 16 email: [email protected] 17 3Laboratory of Soil Zoology, Institute of Ecology & Evolution, Russian Academy of Sciences, Leninsky prospekt 33, 18 119071 Moscow, Russia 19 email: [email protected] 20 email: [email protected] 21 4Dept. of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands 22 email: [email protected] 23 email: [email protected] 24 5Institute for Environmental Studies, Charles University in Prague, Faculty of Science, Benátská 2, 128 43 Praha 2, 25 Czech Republic 26 email: [email protected] 27 6Vrije Universiteit Amsterdam, Department of Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The 28 Netherlands 29 email: [email protected] 30 7Université Pierre et Marie Curie, Centre IRD Ile de France, 32, rue H. Varagnat, 93143 Bondy Cedex, France 31 email: [email protected] 32 8Centre for Biodiversity Theory and Modelling, Station d'Ecologie Théorique et Expérimentale, UMR 5321 CNRS & 33 Université Paul Sabatier, 2, route du CNRS, 09200 Moulis, France 34 email: [email protected] 35 9School of Global Environmental Sustainability & Dept.
    [Show full text]
  • Fundamentals in Soil Science Course a Course Offered by the Soil Science Society of America
    Fundamentals in Soil Science Course A course offered by the Soil Science Society of America. This course is divided into six modules: Fundamentals of Soil Genesis, Classification, and Morphology, Fundamentals in Soil Chemistry and Mineralogy, Fundamentals in Soil Fertility and Nutrient Management, Soil Biology and Soil Ecology, Influences and Management of Soil Physical Properties and Soil and Land Use Management. Each module contains 2 lessons. Lectures are approximately two hours. To maximize learning, students will be expected to spend time reading and studying outside of the recorded lesson. Course Description The Soil Science Fundamentals Review Course is designed to provide an overview of the fundamental concepts in soil science: Genesis, Classification and Morphology, Physics, Chemistry, Fertility, Biology, and Land Use. Instructors will use the Fundamentals Performance Objectives (POs) as a guide for discussing topics within each section, but will not go through each objective individually. However, students are encouraged to ask questions regarding specific POs if needed. The objective of the course is to provide the student with a formalized way to build their fundamental knowledge and skills within the different areas of soil science to enhance their professional skills and/or to prepare to take the Fundamentals of Soil Science Exam. Lecture material is supplemented with additional readings and practical examples to illustrate the concepts and provide practical examples of how the concepts are used in practice. This course is not designed to teach a student how to take the Fundamentals Exam, but instead is designed to complement the students existing knowledge of soil science and help the student understand the principles behind the POs.
    [Show full text]
  • Soil Fauna: Key to New Carbon Models
    SOIL, 2, 565–582, 2016 www.soil-journal.net/2/565/2016/ doi:10.5194/soil-2-565-2016 SOIL © Author(s) 2016. CC Attribution 3.0 License. Soil fauna: key to new carbon models Juliane Filser1, Jack H. Faber2, Alexei V. Tiunov3, Lijbert Brussaard4, Jan Frouz5, Gerlinde De Deyn4, Alexei V. Uvarov3, Matty P. Berg6, Patrick Lavelle7, Michel Loreau8, Diana H. Wall9, Pascal Querner10, Herman Eijsackers11, and Juan José Jiménez12 1Center for Environmental Research and Sustainable Technology, University of Bremen, General and Theoretical Ecology, Leobener Str. – UFT, 28359 Bremen, Germany 2Wageningen Environmental Research (Alterra), P.O. Box 47, 6700 AA Wageningen, the Netherlands 3Laboratory of Soil Zoology, Institute of Ecology & Evolution, Russian Academy of Sciences, Leninsky prospekt 33, 119071 Moscow, Russia 4Dept. of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands 5Institute for Environmental Studies, Charles University in Prague, Faculty of Science, Benátská 2, 128 43 Praha 2, Czech Republic 6Vrije Universiteit Amsterdam, Department of Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands 7Université Pierre et Marie Curie, Centre IRD Ile de France, 32, rue H. Varagnat, 93143 Bondy CEDEX, France 8Centre for Biodiversity Theory and Modelling, Station d’Ecologie Théorique et Expérimentale, UMR5321 – CNRS & Université Paul Sabatier, 2, route du CNRS, 09200 Moulis, France 9School of Global Environmental Sustainability & Dept. Biology, Colorado State University, Fort Collins, CO 80523-1036, USA 10University of Natural Resources and Life Sciences, Department of Integrated Biology and Biodiversity Research, Institute of Zoology, Gregor-Mendel-Straße 33, 1180 Vienna, Austria 11Wageningen University and Research Centre, P.O.
    [Show full text]
  • Articles, and the Creation of New Soil Habitats in Other Scientific fields Who Also Made Early Contributions Through the Weathering of Rocks (Puente Et Al., 2004)
    Editorial SOIL, 1, 117–129, 2015 www.soil-journal.net/1/117/2015/ doi:10.5194/soil-1-117-2015 SOIL © Author(s) 2015. CC Attribution 3.0 License. The interdisciplinary nature of SOIL E. C. Brevik1, A. Cerdà2, J. Mataix-Solera3, L. Pereg4, J. N. Quinton5, J. Six6, and K. Van Oost7 1Department of Natural Sciences, Dickinson State University, Dickinson, ND, USA 2Departament de Geografia, Universitat de València, Valencia, Spain 3GEA-Grupo de Edafología Ambiental , Departamento de Agroquímica y Medio Ambiente, Universidad Miguel Hernández, Avda. de la Universidad s/n, Edificio Alcudia, Elche, Alicante, Spain 4School of Science and Technology, University of New England, Armidale, NSW 2351, Australia 5Lancaster Environment Centre, Lancaster University, Lancaster, UK 6Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Tannenstrasse 1, 8092 Zurich, Switzerland 7Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium Correspondence to: J. Six ([email protected]) Received: 26 August 2014 – Published in SOIL Discuss.: 23 September 2014 Revised: – – Accepted: 23 December 2014 – Published: 16 January 2015 Abstract. The holistic study of soils requires an interdisciplinary approach involving biologists, chemists, ge- ologists, and physicists, amongst others, something that has been true from the earliest days of the field. In more recent years this list has grown to include anthropologists, economists, engineers, medical professionals, military professionals, sociologists, and even artists. This approach has been strengthened and reinforced as cur- rent research continues to use experts trained in both soil science and related fields and by the wide array of issues impacting the world that require an in-depth understanding of soils.
    [Show full text]
  • Cartoon History of Soil Microbiology, a (JNRLSE)
    A Cartoon History of Soil Microbiology M. S. Coyne* ABSTRACT particularly endearing because they convey their message Students reviewing the history of soil microbiology may see while making us laugh (either inwardly or outwardly). Gary great microbiologists as icons rather than real people. I employ Larsen's portrayal of science and weird science in The Far cartoons to present a historical perspective of soil microbiolo- Side cartoon and Sidney Harris' sophisticated analyses of gy that makes this information more entertaining and conse- industrial science are classic examples of the genre. They're quently more palatable to introductory students. Basic histori- funny while simultaneously conveying either the principles, cal facts and major accomplishments of the pioneering soil foibles, or stereotypes of scientists and their science. microbiologists are present in a factual but tongue-in-cheek Much of the humor in these cartoons lies in knowing survey. The material is either presented as a slide show in class enough science to appreciate the jokes. For several years or as a part of a manual students may read at their leisure. I've been using cartoons to illustrate microbial principles for Comments about this approach have generally been favorable, students taking introductory soil microbiology at the but it lacks a rigorous test demonstrating whether it achieves University of Kentucky. What follows is a presentation I use its intended goal. This type of multimedia presentation should to introduce these students to the history of soil microbiolo- have potential application to a wider range of introductory gy and the key players who made the discipline what it is course material.
    [Show full text]
  • Sustainable Soil Management
    Top of Form ATTRAv2 page skip navigation 500 500 500 500 500 0 Search Bottom of Form 800-346-9140 Home | Site Map | Who We Are | Contact (English) Us | Calendar | Español | Text Only 800-411-3222 (Español) Home > Master Publication List > Sustainable Soil Management What Is Sustainable Soil Management Sustainable Agriculture? The printable PDF version of the Horticultural By Preston Sullivan entire document is available at: Crops NCAT Agriculture Specialist http://attra.ncat.org/attra- © NCAT 2004 pub/PDF/soilmgmt.pdf Field Crops ATTRA Publication #IP027/133 31 pages — 1.5 mb Download Acrobat Reader Soils & Compost Water Management Pest Management Organic Farming Livestock Marketing, Business & Risk Abstract Soybeans no-till planted into Management wheat stubble. This publication covers basic soil Photo by: Preston Sullivan Farm Energy properties and management steps toward building and maintaining healthy soils. Part I deals with basic Education soil principles and provides an understanding of living soils and how they work. In this section you will find answers to why soil organisms Other Resources and organic matter are important. Part II covers management steps to build soil quality on your farm. The last section looks at farmers who Master have successfully built up their soil. The publication concludes with a Publication List large resource section of other available information. Table of Contents Top of Form Part I. Characteristics of Sustainable Soils o Introduction o The Living Soil: Texture and Structure o The Living Soil: The Importance of Soil Organisms 1011223551022 o Organic Matter, Humus, and the Soil Foodweb o Soil Tilth and Organic Matter oi o Tillage, Organic Matter, and Plant Productivity o Fertilizer Amendments and Biologically Active Soils Go o Conventional Fertilizers Enter your o Top$oil—Your Farm'$ Capital email above o Summary of Part I and click Go.
    [Show full text]
  • Soil Microbiology
    Module 5 TAKING CARE OF OUR PLANET • Unit 1 PLANET EARTH IS IN THE DANGER ZONE SOIL MICROBIOLOGY 1 Read the following text and decide which of these adjectives could be used instead of those underlined in the passage: abundant, available, better, big, dangerous, entire, minute, productive, several, supreme, useful, vital. Inorganic constituents (minerals, water, process that crop residues, grass clippings, air), dead organic matter and soil life are leaves, organic wastes, etc., are decomposed the components that make up the total soil and converted to forms useable for plant environment. The living portion of the soil can growth as well as converted to stable soil be divided into macro- and micro-organisms. organic matter called ‘humus’. Macro-organisms play an important role in The large organisms function as grinders in organic decomposition by chewing plant that they reduce the particle size of organic and animal residues into fine particles. residues making them more accessible and Though the micro-organic portion represents decomposable by the soil microbes. The soil considerably less than 1% of the soil mass, it microbial population also further decomposes is on this tiny fraction that the continued re- the waste products of the larger animals. cycling of nutrients mainly depends. Thus, the activities of different groups of soil Normal, fertile soils teem with soil microbes. organisms are linked in complex “food webs”. The most numerous microbes in soil are the One beneficial process carried out exclusively bacteria followed by the actinomycetes, the by soil microbes is called nitrogen fixation, the fungi, soil algae and cyanobacteria (“blue- capture of inert N2 gas (dinitrogen) from the air green algae”) and soil protozoa.
    [Show full text]
  • Faunal Activities and Soil Processes : Adaptive Strategies That Determine
    F Faunal Activities .and Soil Processes: Adaptive Strategies That Determine Ecosystem Function P . LAVELLE I . Summary ................................................. 93 II . Introduction ............................................... 94 III . The role of invertebrates in the soil system ....................... 96 N . Adaptive strategies of soil organisms: the sleeping beauty and the ecosystem engineers ........................................ 97 V . Microfauna: microbial regulation in micro-foodwebs ...............101 A . The composition of micro-foodwebs ........................ 101 B., Distribution and dispersal of microsites ..................... 103 C. Evidence for the functional importance of micro-foodwebs: effects on SOM dynamics ...................104 VI . Saprophagous arthropoda: the litter transformers ..................105 A . Niche .............................................. 105 B . Structures ............................................ 105 C. Effects on physical parameters of soil ...................... 106 D . SOM dynamics ....................................... 106 E. Effects on plant growth in microcosms ..................... 108 VII. Termites and earthworms: the ecosystem engineers ................108 A . Roles ............................................... 108 B . Effects on physical structure ............................. 109 C. Effects on SOM dynamics ............................... 115 D. Effects on plant growth ................................. 118 Vm . Conclusions .............................................
    [Show full text]