This is a repository copy of Probabilistic Graph Programs for Randomised and Evolutionary Algorithms. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/129963/ Version: Accepted Version Proceedings Paper: Atkinson, Timothy, Plump, Detlef orcid.org/0000-0002-1148-822X and Stepney, Susan orcid.org/0000-0003-3146-5401 (2018) Probabilistic Graph Programs for Randomised and Evolutionary Algorithms. In: Lambers, Leen and Weber, Jens, (eds.) Proceedings 11th International Conference on Graph Transformation (ICGT 2018). Lecture Notes in Computer Science . Springer . https://doi.org/10.1007/978-3-319-92991-0_5 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing
[email protected] including the URL of the record and the reason for the withdrawal request.
[email protected] https://eprints.whiterose.ac.uk/ Probabilistic Graph Programs for Randomised and Evolutionary Algorithms Timothy Atkinson⋆, Detlef Plump, and Susan Stepney Department of Computer Science, University of York, UK {tja511,detlef.plump,susan.stepney}@york.ac.uk Abstract. We extend the graph programming language GP2 with prob- abilistic constructs: (1) choosing rules according to user-defined probabil- ities and (2) choosing rule matches uniformly at random.