01-Jan:Feb 2021-Corrlr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THUBAN the Star Thuban in the Constellation Draco (The Dragon) Was the North Pole Star Some 5,000 Years Ago, When the Egyptians Were Building the Pyramids
STAR OF THE WEEK: THUBAN The star Thuban in the constellation Draco (the Dragon) was the North Pole Star some 5,000 years ago, when the Egyptians were building the pyramids. Thuban is not a particularly bright star. At magnitude 3.7 and known as alpha draconis it is not even the brightest star in its constellation. What is Thuban’s connection with the pyramids of Egypt? Among the many mysteries surrounding Egypt’s pyramids are the so-called “air shafts” in the Great Pyramid of Giza. These narrow passageways were once thought to serve for ventilation as the The Great Pyramid of Giza, an enduring monument of ancient pyramids were being built. In the 1960s, though, Egypt. Egyptologists believe that it was built as a tomb for fourth dynasty Egyptian Pharaoh Khufu around 2560 BC the air shafts were recognized as being aligned with stars or areas of sky as the sky appeared for the pyramids’ builders 5,000 years ago. To this day, the purpose of all these passageways inside the Great Pyramid isn’t clear, although some might have been connected to rituals associated with the king’s ascension to the heavens. Whatever their purpose, the Great Pyramid of Giza reveals that its builders knew the starry skies intimately. They surely knew Thuban was their Pole Star, the point around which the heavens appeared to turn. Various sources claim that Thuban almost exactly pinpointed the position of the north celestial pole in the This diagram shows the so-called air shafts in the Great year 2787 B.C. -
Where Are the Distant Worlds? Star Maps
W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star. -
New Atmospheric Parameters and Spectral Interpolator for the MILES Cool Stars Kaushal Sharma1,2,3, Philippe Prugniel1,2, and Harinder P
A&A 585, A64 (2016) Astronomy DOI: 10.1051/0004-6361/201526111 & c ESO 2015 Astrophysics New atmospheric parameters and spectral interpolator for the MILES cool stars Kaushal Sharma1,2,3, Philippe Prugniel1,2, and Harinder P. Singh3,1,2 1 Université de Lyon, Université Lyon 1, 69622 Villeurbanne, France e-mail: [email protected] 2 CRAL, Observatoire de Lyon, CNRS UMR 5574, 69561 Saint-Genis Laval, France 3 Department of Physics and Astrophysics, University of Delhi, 110007 Delhi, India e-mail: [kaushal;hpsingh]@physics.du.ac.in Received 17 March 2015 / Accepted 18 October 2015 ABSTRACT Context. The full spectrum fitting of stellar spectra against a library of empirical spectra is a well-established approach to measure the atmospheric parameters of FGK stars with a high internal consistency. Extending it towards cooler stars still remains a challenge. Aims. We address this question by improving the interpolator of the Medium-resolution INT Library of Empirical Spectra (MILES) library in the low effective temperature regime (Teff < 4800 K), and we refine the determination of the parameters of the cool MILES stars. Methods. We use the ULySS package to determine the atmospheric parameters (Teff,logg and [Fe/H]), and measure the biases of the results with respect to our updated compilation of parameters calibrated against theoretical spectra. After correcting some systematic effects, we compute a new interpolator that we finally use to redetermine the atmospheric parameters homogeneously and assess the biases. Results. Based on an updated literature compilation, we determine Teff in a more accurate and unbiased manner compared to those determined with the original interpolator. -
Dhruva the Ancient Indian Pole Star: Fixity, Rotation and Movement
Indian Journal of History of Science, 46.1 (2011) 23-39 DHRUVA THE ANCIENT INDIAN POLE STAR: FIXITY, ROTATION AND MOVEMENT R N IYENGAR* (Received 1 February 2010; revised 24 January 2011) Ancient historical layers of Hindu astronomy are explored in this paper with the help of the Purân.as and the Vedic texts. It is found that Dhruva as described in the Brahmân.d.a and the Vis.n.u purân.a was a star located at the tail of a celestial animal figure known as the Úiúumâra or the Dolphin. This constellation, which can be easily recognized as the modern Draco, is described vividly and accurately in the ancient texts. The body parts of the animal figure are made of fourteen stars, the last four of which including Dhruva on the tail are said to never set. The Taittirîya Âran.yaka text of the Kr.s.n.a-yajurveda school which is more ancient than the above Purân.as describes this constellation by the same name and lists fourteen stars the last among them being named Abhaya, equated with Dhruva, at the tail end of the figure. The accented Vedic text Ekâgni-kân.d.a of the same school recommends observation of Dhruva the fixed Pole Star during marriages. The above Vedic texts are more ancient than the Gr.hya-sûtra literature which was the basis for indologists to deny the existence of a fixed North Star during the Vedic period. However the various Purân.ic and Vedic textual evidence studied here for the first time, leads to the conclusion that in India for the Yajurvedic people Thuban (α-Draconis) was Dhruva the Pole Star c 2800 BC. -
The Fall of the Youngest Planetary Nebula, Hen3-1357
IOP Publishing Submitted in this form to ApJ 3 Sept 2020 Astrophysical Journal ApJ (XXXX) XXXXXX https://doi.org/XXXX/XXXX The Fall of the Youngest Planetary Nebula, Hen3-1357 Bruce Balick1*, Martín A. Guerrero2, Gerardo Ramos-Larios3 1 Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA 2 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía S/N, 18008 Granada, Spain 3 Instituto de Astronomía y Meteorología, Universidad de Guadalajara, 44130 Guadalajara, Mexico *Corresponding author: [email protected] Received xxxxxx Accepted for publication xxxxxx Published xxxxxx Abstract The Stingray Nebula, aka Hen3-1357, went undetected until 1990 when bright nebular lines and radio emission were unexpectedly discovered. We report changes in shape and rapid and secular decreases in its nebular emission-line fluxes based on well calibrated images obtained by the Hubble Space Telescope in 1996, 2000, and 2016. Hen3-1357 is now a “recombination nebula”. Keywords: planetary nebulae: Planetary nebulae (1249), Post-asymptotic giant branch stars (2121), Ionization (2068) 1. Introduction Planetary nebulae (“PNe”) consist of stellar gas ejected in winds from the surfaces of post Asymptotic Branch Giant (“AGB”) stars. The winds systematically expose deeper and much hotter interior stellar layers until stellar energetic ultraviolet (“UV”) begins to ionize the ejected gas. The PN radiates a rich, luminous, and readily detectable set of emission lines (e.g., 6) as electron recombinations with H+ and He+ and optical forbidden lines of N+, O+, O++, S+, etc. These lines become increasingly visible by about a millennium after the winds begin as the central star shifts towards higher temperatures > 40 kK. -
About the Foroughi Cup and About the Seven Planets in the Ancient World
Archaeoastronomy and Ancient Technologies 2018, 6(2), 31–37; http://aaatec.org/art/a_cm2 www.aaatec.org ISSN 2310-2144 About the Foroughi Cup and about the seven planets in the Ancient World Mario Codebò 1, Henry De Santis 2 1 Archeoastronomia Ligustica, S.I.A., SAIt, Genoa, Italy; E-Mail: [email protected] 2 Archeoastronomia Ligustica, S.I.A., SAIt, Genoa, Italy; E-Mail: [email protected] Abstract The Foroughi Cup is an artefact of the 8th century BC of Aramaic cultural context, inside which images of stars and constellations are reproduced. In this study of ours we start from the conclusions reached by Amadasi Guzzo and Castellani in their two works of 2005 and 2006 and we add some further considerations and identifications. We then explain the hypothesis that some cultures of the Ancient World include seven planets, excluding the Moon and the Sun, because Mercury and Venus, always visible only at dawn or at sunset, were perhaps considered four different planets. Finally, we propose the thesis that their evil character depends, as for every new star (novae, supernovae, comets, etc.), on the fact that they alter the synchrony of the cosmos with their variable motion (variable declination heaven bodies). Keywords: Foroughi Cup, planets, Moon, Sun, Aramaic culture. The Foroughi Cup The Foroughi Cup is a bronze artefact (fig. 1), dated to the first half of the 1st millennium BC, containing in its concave interior a representation of the celestial vault and seven very small Aramaic inscriptions, only three of which are quite legible: ŠMŠ = Sun (above the representation of the Sun, in which a lion's head is also engraved); ŠHR = Moon (above the representation of the crescent of the Moon); hypothetically R'Š ŠR' = Head of the Bull (above the bucranium). -
Indian Institute of Astrophysics Academic Report 1997-1998
INDIAN INSTITUTE OF ASTROPHYSICS ACADEMIC REPORT 1997-1998 ecf1ted by: P.Venkatakrishnan Editorial Assmance : Sandra Rajiva Front Cover Radioheliogram of active region obtained from Gauribidanur. Back Cover Lab simulation of optical interferometry. Interferogram produced with seven holes at High Angular Resolution Laboratory. Bangelore. Prned at Vykat Pmta Pvt. Ud.• Aiport Road Cross, Banga/ore 560017 CONTENTS Page Page Governing Council 1 Library 48 Highlights of the year 1997-98 3 Official Language Implementation 48 Sun and the solar system 7 Personnel 49 Stars and stellar systems 17 Appendixes 51 Theoretical Astrophysics 27 A: Publications 5:1 Physics 35 B: HRD Activities 65 Facilities 39 C: Sky Conditions at VBO and Kodaikanal Observatory 67 GOVERNING COUNCIL 1 Prof. B. V. Sreekantan Chairman Prof. Yash Pal Member S. Radhakrishnan Professor Chairman, Steering Committee National Institute of Advanced Studies Inter-University Consortium for Indian Inst.itute of Science Campus Educational Communication Bangalore 560012 New Delhi 110067 Prof. V.S. Ramamurthy Member Prof. 1. B. S. Passil Member Secretary Professor, Department of Science and Technology Centre for Advanced Study in Mathematics New Delhi 110016 Panjab University Chandigarh 160014 Sri Rahul Sarin, lAS Member Joint Secretary and Financial Advisor Prof. H. S. Mani2 Membpr Department. of Science and Technology Director New Delhi 110016 Mehta Research Institute of Mathematirs & Mathematical Physics Prof. J. C. Bhattacharyya2 Member Chhatnag Road, Jhusi 215, Trinity Enclave Allahabad 221506 Old Madras Road Bangalore 560008 Dr. S.K. Sikka Associate Director, Prof. Ramanath Cowsik Member Solid St.ate & Spectroscopy Group, and Director Head, High Pressure Physics Division Indian Institute of Astrophysics BARC, Trombay, Mumbai 400085 Bangalore 560034 Prof. -
Iohannis Scotti Annotationes in Marcianum
THE MEDIAEVAL ACADEMY OF AMERICA PUBLICATION No. 34 IOHANNIS SCOTTI ANNOTATIONES IN MARCIANUM IOHANNIS SCOTTI ANNOTATIONES IN MARCIANUM EDITED BY CORA E. LUTZ Wilson College THE MEDIAEVAL ACADEMY OF AMERICA CAMBRIDGE, MASSACHUSETTS 1939 The publication of this book was made possible by grants of funds to the Academy from the Carnegie Corporation of New Tork and the American Council of Learned Societies. COPYRIGHT BY THE MEDIAEVAL ACADEMY OF AMERICA '939 Printed in U. S. A. PUNTED BY THE WAVISLY FKES3, INC. BALTIMORE, MARYLAND PREFACE EDIAEVALISTS have long felt the need for an edition of the M only work of John the Scot which has hitherto remained un- published, his commentary on the De nuptiis Philologiae et Mercurii of Martianus Capella. I first became interested in this problem while a student at the Yale Graduate School. There, under the guidance of Professor E. T. Silk, I made a study of the ninth-century commentaries on the seven liberal arts with especial reference to John the Scot, and presented it, together with a critical edition of four books of his commen- tary, as a dissertation for the doctor's degree. Since then, I have com- pleted the text, and have incorporated, with some revision, the pertinent conclusions of the earlier study into the introduction to the present edi- tion. I have taken the opportunity to suggest a few of the interesting problems which a consideration of the commentary has brought to my attention, although my main purpose has always been simply to make available this important treatise. Constantly, during the course of my work, I have taken advantage of the knowledge and interest of Professor Silk. -
A Brief History of Beiji 北极 (Northern Culmen), with an Excursus on the Origin of the Character Di 帝”
DRAFT OF WORK IN PROGRESS: NOT FOR CIRCULATION OR CITATION “A Brief History of Beiji 北极 (Northern Culmen), with an Excursus on the Origin of the Character di 帝” David W. Pankenier Lehigh University Abstract: In ancient Chinese astral lore, the imperial nomenclature associated with the circumpolar stars in the Palace of Purple Tenuity 紫微垣 points to the crucial importance of the north-pole in astrological, calendrical, and spiritual contexts. But preoccupation with this numinous region has a history dating back far earlier than the Qin and Han empires. This paper briefly surveys what is known about the pre-imperial history of the region of the ‘Northern Culmen,’ with particular reference to spiritual and metaphysical conceptions concerning the Northern Dipper, and to the void at the pivot of the heavens, where there was no prominent pole star throughout much of the formative period of classical Chinese civilization. The discussion concludes with a hypothesis about possible astral origins of the ancient form of the character used to denote the High God di 帝. Chinese preoccupation with astronomical orientation has a very long history. Archaeological evidence from the 5th millennium BCE Neolithic cultures of North China shows that burials and dwellings were already being oriented with particular attention to the diurnal and seasonal variations in the Sun’s position.1 With the beginning of the Bronze Age in the early 2nd millennium BCE and the inception of early state formation, such concepts had progressed to the point where ritually and politically important structures were uniformly quadrilateral in shape and cardinally oriented, with the longitudinal axis aligned with varying precision in a north-south direction.2 Palatial structures and royal tombs from the earliest dynastic states in the 2nd millennium BCE, that is, Xia,3 Shang, and Zhou, consistently display such orientation. -
Orders of Magnitude (Length) - Wikipedia
03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre -
Astronomers Observe Star Reborn in a Flash 13 September 2016
Astronomers observe star reborn in a flash 13 September 2016 astronomers have observed an exception to this rule. "SAO 244567 is one of the rare examples of a star that allows us to witness stellar evolution in real time", explains Nicole Reindl from the University of Leicester, UK, lead author of the study. "Over only twenty years the star has doubled its temperature and it was possible to watch the star ionising its previously ejected envelope, which is now known as the Stingray Nebula." SAO 244567, 2700 light-years from Earth, is the central star of the Stingray Nebula and has been visibly evolving between observations made over the last 45 years. Between 1971 and 2002 the surface temperature of the star skyrocketed by almost 40 000 degrees Celsius. Now new observations made with the Cosmic Origins Spectrograph (COS) on the NASA/ESA Hubble Space Telescope have revealed that SAO 244567 has started to cool and expand. This image of the Stingray nebula, a planetary nebula This is unusual, though not unheard-of, and the 2400 light-years from Earth, was taken with the Wide rapid heating could easily be explained if one Field and Planetary Camera 2 (WFPC2) in 1998. In the assumed that SAO 244567 had an initial mass of 3 centre of the nebula the fast evolving star SAO 244567 to 4 times the mass of the Sun. However, the data is located. Observations made within the last 45 years show that SAO 244567 must have had an original showed that the surface temperature of the star mass similar to that of our Sun. -
Monthly Notices of the Everglades Astronomical Society
Monthly Notices of the Everglades Astronomical Society Naples, FL July 2014 Officers: President: Todd Strackbein ([email protected]); VP/Secretary: Denise Sabatini ([email protected]); Treasurer: Bob Gurnitz; Newsletter Editor: Jackie Richards ([email protected]) Home Page: http://naples.net/clubs/eas Webmaster: Martin Zombeck ([email protected]) Fak Coordinator & information on viewing: Charlie Paul ([email protected]) 410-8192 Mailing Address: P. O. Box 1868, Marco Island, FL 34146 President’s Message This Tuesday is our first summer casual meeting at Second Next Meeting Cup in the Mercato Shops. July 8, 2014: Time 7:00 – 9:00 pm Second Cup (@ Mercado) http://www.mercatoshops.com/store/second- 9115 Strada Place cup/2137049176/2138839717. Nutwood Observatory We will return to the Norris Center in September. The By Jackie Richards weather has been rough these past weeks with the tropical patterns fully upon us and Saturn tracking a bit low in the While many amateur astronomers will head south during the southern sky this year. It definitely takes a bit more winter to attend the Winter Star Party, you might want to determination but well worth seeing what our summer skies travel north during the summer to the Nutwood Observatory in have to offer. Watch your emails to see if any events get Canada. The below picture of the Pinwheel galaxy was taken scheduled in the coming weeks where help is needed. by club member, Brian McGaffney, at the Nutwood Observatory last month. In case you missed it, Brian gave a Clear skies and enjoy your summer. presentation at our March meeting during which he shared information about the Nutwood Observatory as well as the President Todd Strackbein amazing photos taken from there.