The Saturn Nebula) with Adaptive Optics (AO
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Director's Message
1 Director’s Message Laura Ferrarese 3 Rocky Planet Engulfment Explains Stellar Odd Couple Carlos Saffe 7 Astronomers Feast on First Light From Gravitational Wave Event Peter Michaud 11 Science Highlights Peter Michaud 15 On the Horizon Gemini staff contributions 18 News for Users Gemini staff contributions ON THE COVER: GeminiFocus October 2017 Gemini South provided critical GeminiFocus is a quarterly publication observations of the first of the Gemini Observatory electromagnetic radiation from 670 N. A‘ohoku Place, Hilo, Hawai‘i 96720, USA a gravitational wave event. / Phone: (808) 974-2500 / Fax: (808) 974-2589 (See details starting on page 7.) Online viewing address: www.gemini.edu/geminifocus Managing Editor: Peter Michaud Associate Editor: Stephen James O’Meara Designer: Eve Furchgott/Blue Heron Multimedia Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the Gemini Partnership. ii GeminiFocus October 2017 Laura Ferrarese Director’s Message The Three Goals of a Year-long Vision Hello, Aloha, and Hola! I am delighted to address the Gemini community from my new role as the Observatory’s Interim Director. I will hold this position for the next year, while the search for a perma- nent Director moves forward. As I write this (beginning of September), I have been in Hilo, Hawai‘i, for almost two months, and it’s been an exciting time. I have enjoyed work- ing with the Gemini staff, whose drive, dedication, and talent were already well known to me from when I chaired the Observatory Oversight Council on behalf of the Association of Universities for Research in Astronomy (AURA). -
Near-Infrared Luminosity Relations and Dust Colors L
A&A 578, A47 (2015) Astronomy DOI: 10.1051/0004-6361/201525817 & c ESO 2015 Astrophysics Obscuration in active galactic nuclei: near-infrared luminosity relations and dust colors L. Burtscher1, G. Orban de Xivry1, R. I. Davies1, A. Janssen1, D. Lutz1, D. Rosario1, A. Contursi1, R. Genzel1, J. Graciá-Carpio1, M.-Y. Lin1, A. Schnorr-Müller1, A. Sternberg2, E. Sturm1, and L. Tacconi1 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Gießenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, 69978 Ramat Aviv, Israel Received 5 February 2015 / Accepted 5 April 2015 ABSTRACT We combine two approaches to isolate the AGN luminosity at near-IR wavelengths and relate the near-IR pure AGN luminosity to other tracers of the AGN. Using integral-field spectroscopic data of an archival sample of 51 local AGNs, we estimate the fraction of non-stellar light by comparing the nuclear equivalent width of the stellar 2.3 µm CO absorption feature with the intrinsic value for each galaxy. We compare this fraction to that derived from a spectral decomposition of the integrated light in the central arcsecond and find them to be consistent with each other. Using our estimates of the near-IR AGN light, we find a strong correlation with presumably isotropic AGN tracers. We show that a significant offset exists between type 1 and type 2 sources in the sense that type 1 MIR X sources are 7 (10) times brighter in the near-IR at log LAGN = 42.5 (log LAGN = 42.5). -
Gemini North Telescope
Gemini North Telescope Image Credit: Gemini Observatory/AURA/Joy Pollard Gemini Observatory Legacy Image Gemini North Telescope Gemini Observatory Facts The Gemini Observatory is operated by the Association of Universities for The 8-meter Frederick C. Gillett Gemini North telescope is PRIMARY MIRRORS: Research in Astronomy, Inc., under a cooperative agreement with the located near the summit of Hawaii’s Maunakea — a long Diameter: 8.1 meters; 26.57 feet; 318.84 inches National Science Foundation on behalf Mass: 22.22 metric tonnes; 24.5 U.S. tons of the Gemini Partnership. dormant volcano rising 4,205 meters into the dry, stable air Composition: Corning Ultra-Low Expansion (ULE) Glass of the North Pacific. Gemini North was designed and built, Surface Accuracy: 15.6 nm RMS (between 1/1000 - 1/10,000 in part, to provide the best image quality possible from the thickness of human hair) ground for telescopes of its size. TELESCOPE STRUCTURES: United States Four significant features help the telescope achieve this Height: 21.7 meters; 71.2 feet; 7 stories (from “Observing Floor”) goal: (1) An ~20-centimeter-thin primary mirror on a bed of Weight: 380 metric tonnes; 419 U.S. tons Optomechanical Design: Cassegrain ; Alt-azimuth 120 hydraulic actuators; (2) a 1-meter-diameter secondary DOMES: Canada mirror capable of rapid tip-tilt corrective motions; (3) vents on the cylindrical walls to provide a smooth flow of air Height: 46 meters; 151 feet; 15 stories (from ground) above the primary mirror, and to regulate the temperature Weight: 780 metric tonnes; 860 U.S. tons (moving mass) Rotation: 360 degrees in 2 minutes of the air above the mirror to match the outside Thermal Vents: 10 meters; 32.8 feet (width – fully open) temperature; and (4) an adaptive optics system which Brazil GEOGRAPHICAL DATA: can correct for image blurring caused by atmospheric Elevation: Gemini North: 4,214 meters; 13,824 feet turbulence. -
Noirlab Visual Identity V.1.0 — Noirlab Brand Manual “A Logo Is a Flag, a Signature, an Escutcheon, a Street Sign
NOIRLab Visual Identity v.1.0 — NOIRLab Brand Manual “A logo is a flag, a signature, an escutcheon, a street sign. A logo identifies. A logo is rarely a description of a business. A logo derives meaning from the quality of the thing it symbolizes, not the other way around. A logo is less important than the product it signifies; what it represents is more important than what it looks like. The subject matter of a logo can be almost anything.” Paul Rand VI 1.0 ii Table of Contents NOIRLab Visual Identity v.1.0 i » — NOIRLab Brand Manual i Introduction — about this manual 1 ● About NOIRLab 1 ● NOIRLab Design brief 3 » Logo 3 ● General branding principles 4 The NOIRLab Logo 5 ● NOIRLab logo variations 7 » Versions for colored backgrounds 7 » Appropriate and Inappropriate Uses 8 » Widescreen version (for special applications) 9 » Clear Space 9 » NSF and NOIRLab 9 NOIRLab Typeface 10 ● Quatro — Headlines, Subheads, & Callouts 10 ● Source Sans Pro — for sans serif body text 10 ● Freight — for serif body text 10 ● Fallback typeface: Arial — (sans serif) 10 ● Times New Roman — (serif) 10 Color Usage 11 ● Accent Colors 11 Additional Brand Elements 12 ● Watermark elements 13 ● Program Iconography 13 Applications of the Visual Identity 14 ● Letterhead 14 ● Presentation slides 15 ● Poster Templates 15 ● Social Media Posts and Events 16 ● Employee Access Badges 16 ● Conference Nametags 16 ● Office Door Signs 17 ● Controlled document template 17 ● Credit block for CAD drawings 17 Acknowledgments and Affiliations 18 ● Acknowledgments in scientific papers 18 ● Affiliations on conference badges, email signatures etc. 18 iii 2021.06.24 ● Suggested Email signatures 18 ● NOIRLab Scientific and Technical Staff Affiliations 19 ● Image and video Credits 19 ● Branding issues in press releases and other texts 19 ● Business Cards 20 Program logos 21 ● NOIRLab Program Logos 21 ● Cerro Tololo 22 ● Kitt Peak 22 ● Community Science and Data Center 23 ● The Gemini Observatory 23 ● The Vera C. -
The Relationship Between Gas Content and Star Formation Rate in Spiral Galaxies
A&A 490, 571–581 (2008) Astronomy DOI: 10.1051/0004-6361:200810604 & c ESO 2008 Astrophysics The relationship between gas content and star formation rate in spiral galaxies. Comparing the local field with the Virgo cluster M. Fumagalli1,2 and G. Gavazzi1 1 Istituto di Fisica G. Occhialini, Universita’ di Milano-Bicocca, Piazza della scienza 3, Milano, Italy e-mail: [email protected] 2 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA e-mail: [email protected] Received 15 July 2008 / Accepted 1 August 2008 ABSTRACT Context. Despite many studies of star formation in spiral galaxies, a complete and coherent understanding of the physical processes that regulate the birth of stars has not yet been achieved, nor has unanymous consensus been reached, despite the many attempts, on the effects of the environment on the star formation in galaxy members of rich clusters. Aims. We focus on the local and global Schmidt law and we investigate how cluster galaxies have their star formation activity perturbed. Methods. We collect multifrequency imaging for a sample of spiral galaxies, members of the Virgo cluster and of the local field; we compute the surface density profiles for the young and for the bulk of the stellar components, for the molecular and for the atomic gas. Results. Our analysis shows that the bulk of the star formation correlates with the molecular gas, but the atomic gas is important or even crucial in supporting the star formation activity in the outer part of the disks. Moreover, we show that cluster members that suffer from a moderate HI removal have their molecular component and their SFR quenched, while highly perturbed galaxies show an additional truncation in their star forming disks. -
NOAO NEWSLETTER from the Office of the Director
Director’s Corner NOAO NEWSLETTER From the Office of the Director .......................................................................................................................................2 ISSUE 118 | OCTOBER 2018 Science Highlights Looking Ahead to Looking Back in Time with DESI ....................................................................................................3 The Dark Energy Survey: The Journey So Far and the Path Forward ......................................................................5 Managing Editor A Reconnaissance of RECONS .......................................................................................................................................8 Sharon Hunt Discovering 12 New Moons Around Jupiter .................................................................................................................9 NOAO Director’s Office Community Science & Data David Silva “More Is Different” in Data-Driven Astronomy ..........................................................................................................11 Data Lab 2.0 Is Bigger and Better ...............................................................................................................................12 Science Highlights The US Extremely Large Telescope Program .............................................................................................................13 Tod R. Lauer “Science and Evolution of Gemini Observatory” Conference ...............................................................................14 -
The Galactic Center
Proceedings of the International Astronomical Union IAU Symposium No. 303 IAU Symposium IAU Symposium 30 September – 4 October 2013 IAU Symposium 303 highlights the latest Galactic Center research by scientists from around the world. Topics vary from theory 303 Santa Fe, NM, USA through observations, from stars and stellar orbits through nearby black holes and explosive events, to the building blocks and transport of energy in galaxies similar to our own Milky Way. Highlights presented include: high-resolution, multi-wavelength 30 September – 303 30 September – 4 October 2013 The Galactic Center: large-scale surveys of molecular gas in the central molecular and 4 October 2013 The Galactic Center: dust zones of our Galaxy; studies of stellar populations and stellar Santa Fe, NM, USA orbits around the supermassive black hole Sgr A*; presentations of Santa Fe, NM, USA Feeding and Feedback theoretical models to explain the dusty S-cluster object (DSO) G2, Feeding and Feedback in as well as the general accretion and jet formation in the vicinity of Sgr A*; and discussions of large-scale γ -ray emission in the context in a Normal Galactic of energetic activity and magnetic fi elds in the Galactic Center. The volume concludes by looking ahead to future observing a Normal Galactic Nucleus Nucleus opportunities across the electromagnetic spectrum at very high resolution. Proceedings of the International Astronomical Union Editor in Chief: Prof. Thierry Montmerle This series contains the proceedings of major scientifi c meetings held by the International Astronomical Union. Each volume contains a series of articles on a topic of current interest in astronomy, giving a timely overview of research in the fi eld. -
Comet ISON Hurtles Toward an Uncertain Destiny with the Sun
3 Director’s Message Markus Kissler-Patig 6 Featured Science: Dynamical Masses of Galaxy Clusters Discovered with the Sunyaev-Zel’dovich Effect Cristóbal Sifón, Felipe Menanteau, John P. Hughes, and L. Felipe Barrientos, for the ACT collaboration 11 Science Highlights Nancy A. Levenson 14 Cover Story: GeMS Embarks on the Universe Benoit Neichel and Rodrigo Carrasco 19 Instrumentation Development Updates Percy Gomez, Stephen Goodsell, Fredrik Rantakyro, and Eric Tollestrup 23 Operations Corner Andy Adamson 26 Featured Press Release: Comet ISON Hurtles Toward an Uncertain Destiny with the Sun On the Cover: GeminiFocus July 2013 The montage on GeminiFocus is a quarterly publication of Gemini Observatory this issue’s cover highlights several of 670 N. A‘ohoku Place, Hilo, Hawai‘i 96720 USA the spectacular images Phone: (808) 974-2500 Fax: (808) 974-2589 gathered as part of Online viewing address: the System Verification www.gemini.edu/geminifocus of the Gemini Multi- Managing Editor: Peter Michaud conjugate adaptive Science Editor: Nancy A. Levenson optics System (GeMS). Associate Editor: Stephen James O’Meara See the article starting on page 14 Designer: Eve Furchgott / Blue Heron Multimedia to learn more about this system and the cutting-edge science it Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. is performing — right out of the starting gate! 2 GeminiFocus July2013 Markus Kissler-Patig Director’s Message 2013: A Year of Milestones, Change, and Accomplishments We’ve seen quite a few changes at Gemini since the start of 2013. -
Auxiliary Telescopes Control Software
TrendsTrends inin SoftwareSoftware forfor largelarge astronomyastronomy projectsprojects G.Chiozzi, A.Wallander – ESO, Germany K.Gillies – Gemini Observatory, La Serena, Chile B.Goodrich, S.Wampler - National Solar Observatory, Tucson, AZ J.Johnson, K.McCann – W.M.Keck Observatory, Kamuela, HI G.Schumacher – National Optical Astronomy Observatories, La Serena, Chile D.Silva – AURA/Thirty Meter Telescope, Pasadena, CA 1 AspectsAspects analyzedanalyzed z TimelineTimeline z ChallengesChallenges z ArchitectureArchitecture z FrameworksFrameworks z DevelopmentDevelopment methodologiesmethodologies z TechnologicalTechnological implementationimplementation z HWHW platformsplatforms z OperatingOperating systemssystems z ProgrammingProgramming languageslanguages z User Interfaces. User Interfaces. 2 Keck TimelineTimeline VLT/VLTI 1990 Gemini N/S 1995 2000 LSST 2005 ALMA 2010 ATST 2015 TMT 2020 E-ELT 3 ChallengesChallenges ofof newnew projectsprojects z SynchronizedSynchronized multiplemultiple distributeddistributed controlcontrol loopsloops (wave(wave frontfront control)control) z MultiMulti--levellevel offoff--loadingloading schemesschemes z FaultFault detection,detection, isolationisolation andand recoveryrecovery (E(E--ELTELT M1:M1: 10001000 segmentssegments withwith actuatorsactuators andand sensors)sensors) z OperationalOperational efficiencyefficiency (TMT(TMT requirement:requirement: onon targettarget inin <5<5 minutes).minutes). 4 ArchitectureArchitecture z All major facilities in operation: three-tier architecture z High-level coordination -
Infrared-Detected Agns in the Local Universe T
A&A 640, A68 (2020) Astronomy https://doi.org/10.1051/0004-6361/201935971 & c ESO 2020 Astrophysics Infrared-detected AGNs in the local Universe T. Ikiz˙ 1,2,3 , R. F. Peletier1, P. D. Barthel1, and C. Ye¸silyaprak2,3 1 Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands e-mail: [email protected] 2 Department of Astronomy and Astrophysics, Faculty of Science, Atatürk University, Erzurum 25240, Turkey 3 Atatürk University Astrophysics Research and Application Center (ATASAM), Erzurum 25240, Turkey Received 28 May 2019 / Accepted 10 June 2020 ABSTRACT Context. Spitzer/IRAC color selection is a promising technique to identify hot accreting nuclei, that is, active galactic nuclei (AGN), in galaxies. We demonstrate this using a small sample of SAURON galaxies and then explore this technique further. Aims. The goal of this study is to find a simple and efficient way to reveal optically obscured nuclear accretion in (nearby) galaxies. Methods. We applied an infrared selection method to the Spitzer Survey of Stellar Structures in Galaxies (S4G) sample of more than 2500 galaxies, together with its extension sample of more than 400 galaxies. We used the Spitzer colors to find galaxies in the S4G survey containing a hot core, suggesting the presence of a strong AGN, and we studied the detection fraction as a function of morphological type. We tested this infrared color selection method by examining the radio properties of the galaxies via the VLA NVSS and FIRST surveys. Results. Using the radio data, we demonstrate that galaxies displaying hot mid-infrared nuclei stand out as (candidate) active galaxies. -