Acute Tubulointerstitial Nephritis Due to the Use of Rifampicin. Case Report

Total Page:16

File Type:pdf, Size:1020Kb

Acute Tubulointerstitial Nephritis Due to the Use of Rifampicin. Case Report case reports 2020; 6(1) https://doi.org/10.15446/cr.v6n1.80443 ACUTE TUBULOINTERSTITIAL NEPHRITIS DUE TO THE USE OF RIFAMPICIN. CASE REPORT Keywords: Nephritis; Interstitial; Acute Kidney Injury; Rifampin. Palabras clave: Nefritis intersticial; Lesión renal aguda; Rifampicina. Juan Camilo Motta Camilo Andrés Rodríguez Universidad del Rosario - School of Medicine and Health Sciences - Specialization in Internal Medicine - Bogotá D.C. - Colombia. Camilo Cortes Universidad del Rosario - School of Medicine and Health Sciences - Specialization in Internal Medicine - Bogotá D.C. - Colombia. Hospital Universitario Mayor Méderi - Internal Medicine Service - Bogotá D.C. - Colombia. Jaime Escobar Hospital Universitario Mayor Méderi - Inpatient Department - Bogotá D.C. - Colombia. Corresponding author Juan Camilo Motta. Internal Medicine Service, Hospital Universitario Mayor Méderi. Bogotá D.C. Colombia. Email: [email protected]. Received: 14/06/2019 Accepted: 16/09/2019 acute tubulointerstitial nephritis due to the use of rifampicin. case report RESUMEN ABSTRACT 45 Introducción. La rifampicina es un medicamento Introduction: Rifampin is a cornerstone for fundamental en la primera fase del tratamiento the first phase of the treatment of pulmonary en la tuberculosis pulmonar; sin embargo, esta tuberculosis. This report presents the case of puede causar nefritis tubulointersticial aguda a patient with allergic tubulointerstitial nephritis (NTIA) en raras ocasiones. (ATIN) due to rifampin, situation that has not been reported in Colombia. Presentación del caso. Paciente masculino con antecedentes de tuberculosis y en trata- Case presentation: A male patient with a history miento con rifampicina, quien desarrolló lesión of pulmonary tuberculosis treated with rifampin renal aguda. Al ingreso, el sujeto no registró developed acute kidney injury. On admission, no anormalidades o antecedentes que explicaran evidence of abnormalities or history to explain lesión renal, pero sí presentaba acidosis tubular the injury was found, but he did present tubular y síndrome de Fanconi asociado. La lesión renal acidosis and associated Fanconi syndrome. The concordó temporalmente con el uso de rifampi- kidney injury was temporarily consistent with cina y una biopsia de riñón confirmó NTIA. Se rifampicin use, and a kidney biopsy confirmed ordenó suspender el medicamento, con lo cual ATIN. The drug was suspended, resulting in im- la función renal mejoró. proved kidney function. Discusión. La NTIA como un efecto secundario Discussion: ATIN as a side effect of rifampin de la rifampicina es una enfermedad poco repor- is a scarcely reported disease. The risk of de- tada, por tanto, al iniciar y al reiniciar el manejo veloping this condition should be considered con este medicamento se debe tener en cuenta when starting and restarting treatments with el riesgo de desarrollarla. this medication. Conclusión. La NTIA es uno de los efectos Conclusion: ATIN is one of the side effects secundarios del tratamiento de la tuberculosis y, of tuberculosis treatment. Albeit rare, it should aunque es raro, debe tenerse en cuenta al iniciar be considered when starting tuberculosis el esquema de medicamentos para la tuberculosis. medications. case reports Vol. 6 No. 1: 44-51 46 INTRODUCTION consultation according to the four-drug fixed- dose combination regimen used to treat this Rifampicin is a first-line anti-tuberculosis antibiotic condition (isoniazid, rifampin, pyrazinamide, and drug used to treat Mycobacterium tuberculosis. It either ethambutol or streptomycin). (6) inhibits the β subunit of bacterial RNA polymerase The patient’s kidney function was normal prior with a consequent inhibition of messenger RNA to antituberculosis management and he had (1); its use can generate side effects, including liver no previous exposure to other medications, but and gastrointestinal involvement and acute kidney given the abnormal results of laboratory tests injury, which was reported in 0.05% of patients in regarding kidney function, he was referred to the a retrospective study conducted between 1987 emergency department. On admission, the patient and 1995. (2) Factors associated with increased was in good general condition; hydrated; with- risk of kidney involvement were reintroduction out rashes, fever, dysuria, hematuria, abdominal and intermittent use of rifampicin. (2,3) pain, nausea, vomiting, fatigue, or decreased or The onset of acute kidney injury in patients increased amount of urine; he did not present using rifampicin for the first time has been barely any other symptoms on review of systems, nor reported in the literature. (4) These people have manifested other relevant medical history. Physical a favorable prognosis for recovery of kidney examination revealed heart rate of 78 beats per function, which can range from 73% (5) to 96% minute, respiratory rate of 18 breaths per minute, (2), while mortality can reach up to 1.6%. (2) and blood pressure of 118/68 mmHg. Fist percus- sion was negative and there was no abdominal CASE PRESENTATION pain, edema, or neurological abnormalities. Creatinine test requested by the outpatient A 32-year-old Hispanic male from Venezuela consultation service had values of 4.17 mg/dL. and living in Bogotá D.C., unemployed and On admission, new tests were performed (Table with scarce socioeconomic resources, was 1), which showed elevated azoids, proteinuria admitted to the emergency department of the in non-nephrotic range and metabolic acidosis Hospital Universitario Mayor Méderi after being with increased anion gap; lactic acidosis and referred for outpatient treatment of tuberculo- diabetic ketoacidosis were ruled out as causes sis. Treatment was started one month prior to of these symptoms. Table 1. Laboratory test results on admission. Test Results Blood count Leucocytes: 5 460, neutrophils: 3 750, lymphocytes: 840, eosinophils: 100, hemoglobin: 10.1 mg/dl, hematocrit: 31%, mean corpuscular volume: 83.3fL, mean corpuscular hemo- globin: 32pg, red blood cell distribution width: 16.8%, platelets: 360 000. Urinalysis Specific gravity: 1 008, pH: 5, proteins: 25 mg/dL, glucose: 100 mg/dL, red blood cells: 25xc, leucocytes: 5 xc, scarce bacteria and no eosinophiluria. Electrolytes Sodium: 136 mmol/L, potassium: 4.6 mmol/L, chlorine: 103 mmol/L, magnesium: 2.05 mmol/L. Others Prothrombin time: 16.1 s, thromboplastin time: 23 s, human immunodeficiency virus: nega- tive, hepatitis b surface antigen: negative, hepatitis c antibodies: negative, cultures: negative. Continues. acute tubulointerstitial nephritis due to the use of rifampicin. case report Test Results 47 Arterial blood gases pH: 7.38, partial pressure of oxygen: 86, partial pressure of carbon dioxide: 23, bicar- bonate: 14, base excess: -9.4, lactate 1, ratio of partial pressure arterial oxygen and fraction of inspired oxygen: 415. Additional 24-hour urine protein: 700 mg/dL, urine sodium: 99 meq/L, urine potassium: 19.6 meq/L, urine chlorine: 78.1 meq/L, glucose: 102mg/dL. Immunological Antinuclear antibodies: negative, anti-DNA: negative, anti-LA: negative, anti-RO: neg- ative, anti-SM: negative, anti-RNP: negative, C3: normal, C4: normal, anti-neutrophil cytoplasmic antibodies: negative. Source: Own elaboration. Kidney and urinary tract ultrasound showed involvement compatible with Fanconi syndrome. normal-sized kidneys with diffuse increase in echoge- Considering the acute renal injury with prox- nicity and no loss in corticomedullary differentiation. imal and distal tubular involvement, the history The patient presented acute kidney disease of tuberculosis and that rifampicin is the most KDIGO III (7), glomerular filtration rate of 23.38 frequently involved drug in kidney failure in this mL/min calculated by cockroft, proteinuria in the type of cases (8), treatment was suspended and non-nephrotic range, high anion gap metabolic a kidney biopsy was indicated to confirm the acidosis, urine sediment with glycosuria, positive origin of the failure and plan a treatment. After urine anion gap and normal central glucose. All the suspension of rifampicin, azotemias improved this led to consider that there was proximal tubular until creatinine was normalized (Figure 1). Behavior of creatinine mg/dL 5 4 3 2 1 0 Feb Feb Feb 1Feb 12Feb 1Feb 1Feb 1Feb 2Feb 22Feb 2Feb 2Feb 2Feb 2ar ar ar ar 1ar Behavior of creatinine Figure 1. Behavior of creatinine. Source: Own elaboration. Kidney biopsy confirmed acute tubuloint- hypersensitivity with associated tubular injury erstitial nephritis (ATIN) with inflammatory (Figure 2). cells, eosinophils, and interstitial edema. Figure 2 shows 23 normal glomeruli with The findings were also suggestive of drug normal basement membrane, no mesangial case reports Vol. 6 No. 1: 44-51 48 expansion and no endocapillary or extracapillary vacuolization of the tubular epithelium; and proliferation. Tubulointerstitial findings included: irrelevant vascular findings that did not show interstitial inflammation of the whole cortical area; sclerosis or hyalinosis. presence of mononuclear inflammatory cells Management with prednisolone at 1 mg/kg (++++); eosinophils (++); plasmocytes (++); was initiated with stabilization of kidney function tubulitis (++) with focal rupture; degenerative after 6 weeks. Once creatinine levels normalized changes of the tubular epithelium; detachment, (0.9 mg/dl), the patient was discharged; he flattening and cellular remains at intraluminal continued with antituberculosis treatment and level with some neutrophils; extensive irregular
Recommended publications
  • Article Utility of Urine Eosinophils in the Diagnosis of Acute Interstitial
    Article Utility of Urine Eosinophils in the Diagnosis of Acute Interstitial Nephritis Angela K. Muriithi,* Samih H. Nasr,† and Nelson Leung* Summary Background and objectives Urine eosinophils (UEs) have been shown to correlate with acute interstitial nephritis (AIN) but the four largest series that investigated the test characteristics did not use kidney biopsy as the gold standard. *Division of Nephrology and Hypertension, Design, setting, participants, & measurements This is a retrospective study of adult patients with biopsy-proven Department of diagnoses and UE tests performed from 1994 to 2011. UEs were tested using Hansel’s stain. Both 1% and 5% UE Internal Medicine, cutoffs were compared. Mayo Clinic, Rochester, Minnesota; and †Department of Results This study identified 566 patients with both a UE test and a native kidney biopsy performed within a week Laboratory Medicine of each other. Of these patients, 322 were men and the mean age was 59 years. There were 467 patients with and Pathology. Mayo pyuria, defined as at least one white cell per high-power field. There were 91 patients with AIN (80% was drug Clinic, Rochester, induced). A variety of kidney diseases had UEs. Using a 1% UE cutoff, the comparison of all patients with AIN to Minnesota those with all other diagnoses showed 30.8% sensitivity and 68.2% specificity, giving positive and negative ’ Correspondence: likelihood ratios of 0.97 and 1.01, respectively. Given this study s 16% prevalence of AIN, the positive and Dr. Angela K. Muriithi, negative predictive values were 15.6% and 83.7%, respectively. At the 5% UE cutoff, sensitivity declined, but Mayo Clinic, Division specificity improved.
    [Show full text]
  • A Complicated Case of Von Hippel-Lindau Disease
    Postgrad Med J 2001;77:471–480 471 Postgrad Med J: first published as 10.1136/pmj.77.909.478 on 1 July 2001. Downloaded from SELF ASSESSMENT QUESTIONS A complicated case of von Hippel-Lindau disease G Thomas, R Hillson Answers on p 481. A 17 year old female shop assistant presented with a three week history of generalised headache, associated with nausea, vomiting, and vertigo. She had no past medical history, and was taking no regular medication. Her mother was currently receiving radiotherapy for anaplastic carcinoma of the thyroid gland. On examination she had an ataxic gait, bilateral papilloedema, and horizontal nystagmus to right lateral gaze. Left sided dysdiadokinesis and hyper-reflexia were demonstrated. Power and sensation were preserved. Computed tom- ography of the brain revealed a cystic lesion within the left cerebellum. Subsequent mag- netic resonance imaging (MRI) revealed a sec- ond, non-cystic lesion within the region of the right vermis (fig 1). Both images were consist- ent with cerebellar haemangioblastomata. A posterior fossa craniotomy was performed, with successful excision of both tumours. She made an uneventful recovery, with complete resolution of all symptoms, and was subse- Figure 3 MIBG isotope quently discharged. uptake scan. During a follow up outpatient appointment Figure 1 MRI of the brain. six months later, she complained of frequent panic attacks, associated with sweating and http://pmj.bmj.com/ palpitation that had begun two months earlier. These episodes were precipitated by exercise or excitement. She gave no history of heat intoler- Department of ance, weight loss, or diarrhoea. Examination Diabetes and was entirely normal.
    [Show full text]
  • Eosinophiluria in Relation to Pyelonephritis in Women
    Journal of Advanced Laboratory Research in Biology E-ISSN: 0976-7614 Volume 6, Issue 4, 2015 PP 108-110 https://e-journal.sospublication.co.in Research Article Eosinophiluria in relation to Pyelonephritis in Women Pritam Singh Ajmani* Department of Pathology, R.D. Gardi Medical College, Surasa, Ujjain, Madhya Pradesh-456006, India. Abstract: In the present study of outpatient settings, pyelonephritis was diagnosed by the history and physical examination and supported by urinalysis results. After a clinco-pathological confirmation of pyelonephritis in 100 female patients in the age group between 18-55 years were selected. The urine samples were subjected for routine urine analysis and urine sediment was stained with Wright-Giemsa stain. A total of 13% of these patients had eosinophils in urine. Eosinophiluria is defined as the presence of more than 1% eosinophils in urinary sediment under the microscope. Eosinophiluria proved to be good predictors of pyelonephritis, however, it is not specific. Positive test for pyuria of moderate to severe were seen in all (100%) of the cases. Microscopic hematuria was seen in 18% cases. We have found that Wright-Giemsa stain results show consistent results and eosinophils were more easily recognized. Demographic data collected were age, weight, gravidity, and parity. The gestational age of diagnosis was recorded. Keywords: Urine, Wright-Giemsa Stain, Eosinophiluria. 1. Introduction 3. Microscopic Pyuria. 4. Gross Hematuria. Pyelonephritis is a common bacterial infection of 5. Microscopic Hematuria. the renal pelvis and kidney that usually results from 6. WBC casts Indicative of renal origin. ascent of a bacterial pathogen up the ureters from the 7.
    [Show full text]
  • USMLE and COMLEX II
    USMLE and COMLEX Review Nephrology Supplement Glomerulonephritis, Acute Tubular Necrosis and Acute Interstitial Nephritis Northwestern Medical Review www.northwesternmedicalreview.com Lansing, Michigan 2014-2015 1. What is Tamm-Horsfall glycoprotein (THP)? Matching (4 – 15): Match the following urinary casts with the descriptions, conditions, or questions _______________________________________ presented hereafter: _______________________________________ A. Bacterial casts _______________________________________ B. Crystal casts _______________________________________ C. Epithelial casts D. Fatty casts _______________________________________ E. Granular casts _______________________________________ F. Hyaline casts G. Pigment casts H. Red blood cell casts 2. What is a urinary cast? I. Waxy casts J. White blood cell casts _______________________________________ _______________________________________ 4. These types of casts are by far the most common _______________________________________ urinary casts. They are composed of solidified Tamm-Horsfall mucoprotein and secreted from _______________________________________ tubular cells under conditions of oliguria, _______________________________________ concentrated urine, and acidic urine. _______________________________________ _______________________________________ _______________________________________ 5. These types of casts are pathognomonic of acute tubular necrosis (ATN) and at times are 3. What are the major types of urinary casts? described as “muddy brown casts”. _______________________________________
    [Show full text]
  • Drug Induced Nephropathy Cases
    Drug Induced Nephropathy Cases 1. H.H., 43 y.o., 80 kg male being treated for gram-negative septic shock • Admitted to hospital 6 days ago, and has spent the last 3 days intubated in the ICU because of hypotension, respiratory failure, and altered mental status. On admission, H.H. was started on ceftriaxone 2 g IV daily, gentamicin 140 mg IV q8h. • Admission labs: – BUN 13 mg/dL (5-20) – SCr 0.9 mg/dL (0.5-1.2) – Serial, blood, urine, and sputum cultures were positive for Acinetobacter baumanii sensitive to ceftriaxone and gentamicin. • Current medications – Ceftriaxone 2 g IV daily – Gentamicin 140 mg IV q8h. – Norepinephrine IV 18 mcg/min – Pancuronium 0.02 mg/kg IV q3h – Famotidine 20 mg IV q12h – Lorazepam IV 2 mg/hr • Today (hospital day 7) vital signs: – Temp 101.5 F (38.6 C) – BP 90/40 mmHg – Pulse 135 beats/min – Respirations 20 breaths/min • Labs: • BUN 67 mg/dL • SCr 5.4 mg/dL • WBC 16,700 cells/mm3 • Urinalysis: – Many WBC (0-5) – 3% RBC casts (0-1%) – Granular casts – Osmolality 250 mOsm/kg (400-600) • Serum gentamicin with last dose: – Peak 15 mg/dL (target 6-10) – Trough 9.1 mg/dL (target <2) a) Circle the renal parameters that are abnormal. b) What drug is most likely associated with the abnormal renal labs? 1 c) What information did you use to arrive at your assessment? 2. J.S., 50 y.o. female with cellulitus • In hospital blood and wound cultures were positive for methicillin-sensitive Staphylococcus aureus • Received 2 full days nafcillin 2 g IV q4h and then was discharged home on dicloxacillin 500 mg PO QID x 14 d • 10 days post discharge, J.S.
    [Show full text]
  • Diagnosing Drug-Induced AIN in the Hospitalized Patient: a Challenge for the Clinician
    Clinical Nephrology, Vol. 81 – No. 6/2014 (381-388) Diagnosing drug-induced AIN in the hospitalized patient: A challenge for the clinician Mark A. Perazella Perspectives Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA ©2014 Dustri-Verlag Dr. K. Feistle ISSN 0301-0430 DOI 10.5414/CN108301 e-pub: April 2, 2014 Key words Abstract. Drug-induced acute interstitial 5, 6]. As such, healthcare providers must be urine microscopy – eo- nephritis (AIN) is a relatively common cause knowledgeable in the diagnostic evaluation sinophiluria – leukocytes of hospital-acquired acute kidney injury of AKI to be able to differentiate these vari- – white blood cell cast (AKI). While prerenal AKI and acute tubular ous entities. This is particularly important as – acute kidney injury – necrosis (ATN) are the most common forms acute interstitial nephritis of AKI in the hospital, AIN is likely the next AKI is a growing problem in the hospital and – acute tubular necrosis most common. Clinicians must differentiate its incidence continues to increase [1]. Simi- the various causes of hospital-induced AKI; larly, the prevalence of AIN, primarily due to however, it is often difficult to distinguish drugs (> 85%), also appears to be increasing AIN from ATN in such patients. While stan- as a cause of hospital-acquired AKI [6]. dardized criteria are now used to classify AKI into stages of severity, they do not permit Since AKI is linked to untoward out- differentiation of the various types of AKI. comes such as incident and progressive This is not a minor point, as these different chronic kidney disease (CKD), end-stage AKI types often require different therapeutic renal disease (ESRD), and death, it is all the interventions.
    [Show full text]
  • Clinical Decisions in Pediatric Nephrology Farahnak Assadi, M.D
    Clinical Decisions in Pediatric Nephrology Farahnak Assadi, M.D. Clinical Decisions in Pediatric Nephrology A Problem-solving Approach to Clinical Cases Farahnak Assadi, M.D. Professor of Pediatrics Director, Section of Pediatric Nephrology Rush University Medical Center Chicago, Illinois ISBN-13: 978-0-387-74601-2 e-ISBN-13: 978-0-387-74602-9 Library of Congress Control Number: 2007933400 c 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper. 987654321 springer.com This book is dedicated to the individuals who have given meaning to my life: • To the memory of my mother whose hon- esty and fairness served as a model that I have tried to emulate. Her continued love has allowed me to maintain a frame of ref- erence which has assured my happiness • To my father who remains, in his later years, a source of inspiration
    [Show full text]
  • Interstitial & Polycystic Disease
    Tubulointerstitial Kidney Disease, Cystic Renal Disease Renal Genital Urinary System 2019 TUBULOINTERSTITIAL DISEASE AND POLYCYSTIC KIDNEY DISEASE Biff F. Palmer, MD, Office: H5.112; Phone 87848 Email: [email protected] LEARNING OBJECTIVES • List the pertinent aspects of the history, physical examination, serum and urine electrolytes, and urinalysis that distinguish between acute and chronic interstitial nephritis • List the common clinical entities that can give rise to acute or chronic tubulointerstitial renal disease • List the common clinical characteristics of polycystic kidney disease. • Delineate the features that one can utilize to distinguish glomerular versus interstitial renal disease Tubulointerstitial Kidney Disease Tubulointerstitial renal disease involves the tubules and the interstitium rather than the glomeruli and the vasculature of the kidney. Tubulointerstitial disease may be acute or chronic and may present as a primary renal disease or may occur as part of a systemic disorder. Patients may present with subtle tubular defects or fulminant renal failure and can develop renal structural and functional changes that are either reversible or permanent. Although tubulointerstitial renal disease makes up only a small percentage of the cases of chronic kidney disease and end-stage renal disease in the United States, damage to the tubulointerstitium of the kidney contributes significantly to the progression of most of the important forms of renal disease. Specific laboratory findings in patients who have tubulointerstitial disease reflect the underlying etiology; the extent of injury, and the chronicity of the insult. The urinary sediment often contains erythrocytes, leukocytes, and white blood cell casts. Proteinuria, when present, predominantly results from loss of low-molecular-weight proteins (e.g., ß2-microglobulin) rather than loss of albumin.
    [Show full text]
  • Urinary Profiles
    URINARY PROFILES Giovanni B Fogazzi, MD, Milano, Italy Giuseppe Garigali, BSc, Milano, Italy Nuša Avguštin, MD, Ljubljiana, Slovenia THE FOUR PILLARS OF WISDOM OF URINARY MICROSCOPY 1. Sound laboratory methodology 2. Knowledge of all particles and their clinical meaning 3. Identification of the main urinary profiles (= combining urinary sediment findings with proteinuria and S-creatinine) 4. Placing of urinary findings into a wider laboratory and clinical context MAIN URINARY PROFILES • Isolated microscopic hematuria * • Glomerular diseases • Acute interstitial nephritis • Acute kidney injury • BK virus in kidney transplant recipients * • Urological disorders • Urinary tract infection * DEALT WITH IN OTHER PARTS OF THIS COURSE GLOMERULAR DISEASES A WIDE SPECTRUM OF URINARY PROFILES URINARY PROFILES IN GLOMERULAR DISEASES • Isolated dysmorphic microscopic hematuria • Isolated proteinuria • Proteinuria+microscopic hematuria • Gross hematuria (one shot,recurrent,persistent) • The nephritic sediment • The nephrotic sediment • The nephritic+nephrotic sediment S-CREATININE NORMAL OR INCREASED EITHER ACUTELY OR CHRONICALLY THE ACUTE NEPHRITIC SEDIMENT ACUTE NEPHRITIC SYNDROME DEFINITION: A condition characterised by the rapid increase of serum creatinine associated with hematuria (either microscopic or gross) and variable proteinuria,with/without high blood pressure CAUSES: Proliferative and/or necrotizing glomerulonephritis (GN), either primary or secondary PROLIFERATIVE GN GN characterised by increased numbers of cells (either local or from
    [Show full text]
  • Diagnosis and Management of Acute Kidney Injury Epidemiology Of
    Disclosures Diagnosis and Management Consultant for Baxter of Acute Kidney Injury Patent on 0.5% citrate anticoagulant solution for CRRT Ashita Tolwani, M.D., M.S. Professor of Medicine University of Alabama at Birmingham 2017 AKI Outline Epidemiology Definition Epidemiology of AKI Pathophysiology and differential diagnosis Overview of prevention and management 1 Acute Kidney Injury: Why Do We Care? AKI is common (KDIGO definition) 21% of all hospital admissions >50% of ICU patients AKI is associated with increased risk of CKD, ESKD, CV disease, and death Worldwide, 2,000,000 Dialysis‐requiring AKI ICU patients have the worst outcomes 11% of ICU patients with AKI require dialysis and 10‐30% survivpeople will die this year ors remain dialysis dependent at time of hospital discharge of AKI! AKI can be preventable, treatable, and reversible Healthcare workers are not well informed about AKI and its consequences Mehta RL et al. Lancet 2015 Pannu et al. CJASN 2013 Cerda, et al. CJASN 2015 2 Definition More than 30 different definitions exist with a variety of quoted incidence rates, risk factors, and morbidity and mortality rates A staging system is needed to stratify patients so that both accurate identification and prognostication are possible Definition of AKI www.ADQI.net Using RIFLE, Patients with AKI Mortality Risk in Hospitalized Patients Have Poorer Outcomes Analysis of 71,000 pts/13 studies to validate RIFLE Criteria Mild AKI have poor outcomes > 0.3 > 0.5 > 1.0 > 2.0 ↑SCr mg/dL Source: Ricci Z. Kidney Int. 73: 538-546,
    [Show full text]
  • Acute Interstitial Nephritis Diagnostic Difficulties Related to Bacterial Infections
    Acute Interstitial Nephritis Diagnostic Difficulties Related to Bacterial Infections Tibor Nadasdy, MD Acute Interstitial Nephritis (AIN) - Infectious - Bacterial, rarely fungal (pyelonephritis), dominated by neutrophilic granulocytes - Viruses (EBV, CMV, adenovirus, hantavirus, polyomavirus), rickettsia, parasites (usually dominated by mononuclear cells) - Noninfectious (dominated by mononuclear cells) - Drugs (allergic/hypersensitivity AIN) (usually many eosinophil granulocytes) - Antibiotics – most common - Proton pump inhibitors – 2nd most common - NSAID – 3rd most common - Many other drugs - Autoimmune diseases - SLE - Sjögren syndrome - IgG4-related - TINU syndrome - Mixed connective tissue disease - Anti-TBM antibodies - Sarcoidosis - Reactive AIN (glomerulonephritis, vasculitis) - Metabolic disease (e.g. oxalate nephropathy, gout) - Rare familial forms - Monoclonal gammopathy-associated - Idiopathic Acute Nonbacterial Interstitial Nephritis Clinical Symptoms • Mostly nonspecific • Acute Kidney Injury • Sterile pyuria (sometimes WBC casts) • Mild proteinuria • Microscopic hematuria DRUG-INDUCED (HYPERSENSITIVITY) INTERSTITIAL NEPHRITIS Clinical Symptoms Symptoms follow drug exposure (days, weeks, sometimes months) – Symptoms similar to other forms of interstitial nephritis (see previous slide) – There are certain symptoms that are more common, such as • eosinophiluria • skin rash • Fever • peripheral eosinophilia Acute Interstitial Nephritis Urine Sediment eosinophils Acute (nonbacterial) Interstitial Nephritis Microscopic Findings
    [Show full text]
  • Non-Urate Transporter 1, Non-Glucose Transporter Member 9-Related Renal
    Furuto et al. BMC Nephrology (2019) 20:433 https://doi.org/10.1186/s12882-019-1618-1 CASE REPORT Open Access Non-urate transporter 1, non-glucose transporter member 9-related renal hypouricemia and acute renal failure accompanied by hyperbilirubinemia after anaerobic exercise: a case report Yoshitaka Furuto1*, Mariko Kawamura1, Akio Namikawa1, Hiroko Takahashi1, Yuko Shibuya1, Takayasu Mori2 and Eisei Sohara2 Abstract Background: Renal hypouricemia (RHUC) is an inherited heterogenous disorder caused by faulty urate reabsorption transporters in the renal proximal tubular cells. Anaerobic exercise may induce acute kidney injury in individuals with RHUC that is not caused by exertional rhabdomyolysis; it is called acute renal failure with severe loin pain and patchy renal ischemia after anaerobic exercise (ALPE). RHUC is the most important risk factor for ALPE. However, the mechanism of onset of ALPE in patients with RHUC has not been elucidated. The currently known genes responsible for RHUC are SLC22A12 and SLC2A9. Case presentation: A 37-year-old man presented with loin pain after exercising. Despite having a healthy constitution from birth, biochemical examination revealed hypouricemia, with a uric acid (UA) level of < 1 mg/dL consistently at every health check. We detected acute kidney injury, with a creatinine (Cr) level of 4.1 mg/dL, and elevated bilirubin; hence, the patient was hospitalized. Computed tomography revealed no renal calculi, but bilateral renal swelling was noted. Magnetic resonance imaging detected cuneiform lesions, indicating bilateral renal ischemia. Fractional excretion values of sodium and UA were 0.61 and 50.5%, respectively. Urinary microscopy showed lack of tubular injury. The patient’s older sister had hypouricemia.
    [Show full text]