Differentiation of Ncrnas from Small Mrnas In
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RNA Mimicry, a Decoy for Regulatory Proteinsmmi 7911 1..6
Molecular Microbiology (2012) 83(1), 1–6 doi:10.1111/j.1365-2958.2011.07911.x First published online 21 November 2011 MicroCommentary RNA mimicry, a decoy for regulatory proteinsmmi_7911 1..6 S. Marzi and P. Romby* (Beisel and Storz, 2010). Mechanistic studies reveal that Architecture et Réactivité de l’ARN, Université de the majority of these sRNAs share limited or extended Strasbourg, CNRS, IBMC, 15 rue René Descartes, complementarities to mRNAs thus promoting the formation F-67084 Strasbourg, France. of base pairings. Pioneering works performed in Escheri- chia coli and Salmonella typhymurium showed that these sRNAs primarily target mRNAs, which encode membrane Summary proteins, enzymes involved in metabolic pathways, viru- Small non-coding RNA molecules (sRNA) are key lence factors and transcriptional regulators (Storz et al., regulators participating in complex networks, which 2011). In addition, transcriptional regulatory proteins can adapt metabolism in response to environmental induce the synthesis of sRNAs to regulate gene expression changes. In this issue of Molecular Microbiology, and in an opposite manner. Such mixed regulatory networks in a related paper in Proc. Natl. Acad. Sci. USA, Moreno mediated both by sRNAs and regulatory proteins extend et al. (2011) and Sonnleitner et al. (2009) report on the number of regulated genes (Beisel and Storz, 2010). novel sRNAs, which act as decoys to inhibit the Although the most popular mode of action of sRNA is activity of the master post-transcriptional regulatory regulation of expression via base-pairing with mRNAs, few protein Crc. Crc is a key protein involved in carbon sRNAs exert their function on proteins (Fig. -
How Bacterial Cells Keep Ribonucleases Under Control Murray P
FEMS Microbiology Reviews, fuv012, 39, 2015, 350–361 doi: 10.1093/femsre/fuv012 Review Article REVIEW ARTICLE Downloaded from https://academic.oup.com/femsre/article-abstract/39/3/350/2467816 by guest on 06 December 2018 How bacterial cells keep ribonucleases under control Murray P. Deutscher∗ Biochemistry & Molecular Biology, University of Miami, Miami, FL 33136-6129, USA ∗ Corresponding author: Biochemistry & Molecular Biology, University of Miami, 1011 NW 15 St Gautier Building, Room 110, Miami, FL 33136-6129, USA. Tel: +305-243-3150; E-mail: [email protected] One sentence summary: Cells employ a variety of strategies to regulate their complement of ribonucleases to ensure sufficient activity to meet their metabolic requirements and, at the same time, to avoid indiscriminate destruction of important RNA molecules. Editor: Alain Filloux ABSTRACT Ribonucleases (RNases) play an essential role in essentially every aspect of RNA metabolism, but they also can be destructive enzymes that need to be regulated to avoid unwanted degradation of RNA molecules. As a consequence, cells have evolved multiple strategies to protect RNAs against RNase action. They also utilize a variety of mechanisms to regulate the RNases themselves. These include post-transcriptional regulation, post-translational modification, trans-acting inhibitors, cellular localization, as well as others that are less well studied. In this review, I will briefly discuss how RNA molecules are protected and then examine in detail our current understanding of the mechanisms known to regulate individual RNases. Keywords: endoribonuclease; exoribonuclease; post-translational modification; cellular localization; RNA protection INTRODUCTION This can be accomplished by protecting the RNAs such that they resist RNase action or by directly regulating the RNases Ribonucleases (RNases) play a central role in bacterial RNA to limit their activity. -
The Relevance of Ribonuclease III in Pathogenic Bacteria
The Relevance of Ribonuclease III in Pathogenic Bacteria Ana Margarida Teixeira Saramago Dissertation presented to obtain the Ph.D degree in Biology Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa Oeiras, March, 2014 Financial Support from Fundação para a Ciência e Tecnologia (FCT) – Ph.D: grant - SFRH/BD/65607/2009 Work performed at: Control of Gene Expression Laboratory Instituto de Tecnologia Química e Biológica Av. da República (EAN) 2781-901 Oeiras – Portugal Tel: +351-21-4469548 Fax:+351-21-4469549 Supervisor : Professora Doutora Cecília Maria Pais de Faria de Andrade Arraiano – Investigadora Coordenadora, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. (Head of the Laboratory of Control of Gene Expression, where the work of this Dissertation was performed) Co-supervisor : Doutora Susana Margarida Lopes Domingues – Investigadora Pós-Doutorada, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa. (Post-doc Fellow in the Laboratory of Control of Gene Expression, where the work of this Dissertation was performed) President of the Jury : Doutor Carlos José Rodrigues Crispim Romão – Professor Catedrático Aposentado do Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa, por delegação. iii Examiners: Professora Doutora Mónica Amblar Esteban – Investigadora Principal do Instituto de Salud Carlos III, Madrid (Principal Examiner). Professor Doutor Arsénio do Carmo Sales Mendes Fialho – Professor Associado com Agregação, Instituto Superior Técnico, -
Effects of Local Rna Sequence and Structural Contexts on Ribonuclease P Processing Specificity Jing Zhao Case Western Reserve Un
EFFECTS OF LOCAL RNA SEQUENCE AND STRUCTURAL CONTEXTS ON RIBONUCLEASE P PROCESSING SPECIFICITY By JING ZHAO Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Advisor: Dr. Michael E Harris Department of Biochemistry CASE WESTERN RESERVE UNIVERSITY May, 2019 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Jing Zhao candidate for the degree of Doctor of Philosophy *. Committee Chair Eckhard Jankowsky, Ph.D. Committee Member Michael E Harris, Ph.D. Committee Member Jonatha Gott, Ph.D. Committee Member Derek Taylor, Ph.D. Committee Member Date of Defense March 5th, 2019 *We also certify that written approval has been obtained for any proprietary material contained therein 2 Table of Contents Acknowledgement .......................................................................................................... 8 Abstract ........................................................................................................................ 10 Chapter 1 Background and Significance........................................................................ 13 Background .............................................................................................................. 13 Significance .............................................................................................................. 24 Chapter 2 Distributive enzyme binding controlled by local RNA context results in 3′ to 5′ directional processing of dicistronic tRNA -
Revising the Evolutionary Imprint of Rna Structure in Mammalian Genomes
REVISING THE EVOLUTIONARY IMPRINT OF RNA STRUCTURE IN MAMMALIAN GENOMES MARTIN ALEXANDER SMITH B.SC, M.SC A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2012 Institute for Molecular Bioscience ABSTRACT HE COMPLETE HUMAN GENOME SEQUENCE has been resolved for more than T a decade, yet the fraction that is biologically functional remains uncertain. Classical genes encoding proteins compose less than 2% of the sequence, while the majority is transcribed in dynamic and specific patterns during differentiation and development. Hence, the pervasive nature of mammalian transcription lies in stark contrast to its functional annotation. The key to resolving this discrepancy likely resides in the structural and functional analysis of the extensive non-protein cod- ing regions of the genome, which scale proportionately to organismal complexity throughout metazoan evolution. Moreover there is increasing, albeit still limited, evidence that non-protein-coding RNA transcripts arising from the genome convey a multitude of functional roles in the cell, primarily in the regulation of epigenetic processes. This thesis investigates the structures of RNA molecules encoded in mam- malian genomes, with the aim of characterizing the biological foundation of the expansive genomic landscape of undetermined function. In the first part of the thesis I describe the structural predictions of non-protein coding RNAs involved in the regulation of mammary development, breast cancer, melanoma, and mitochon- drial disease. These findings support the idea that non-protein coding portions of mammalian genomes may indeed convey function through RNA structure, and are presumably therefore subject to evolutionary selection. However, these non-coding regions only display patchy evidence of sequence conservation, consistent with observations that less than v10% of the mammalian genome sequence is conserved throughout evolution.