Quantum-Theory Wars Reference Frames, of Holding Mutually Opposing Views and of Being Free to Ramin Skibba Explores a History of Unresolved Change One’S Mind

Total Page:16

File Type:pdf, Size:1020Kb

Quantum-Theory Wars Reference Frames, of Holding Mutually Opposing Views and of Being Free to Ramin Skibba Explores a History of Unresolved Change One’S Mind COMMENT BOOKS & ARTS are led away to their doom”. He says what you wouldn’t expect; if Dyson has a pattern, perhaps it is contra- riety. He prefers the students at Haver- ford College, a liberal-arts university in Pennsylvania — who are “ostentatiously ill-dressed, uncombed, and unwashed” — to Princeton’s “pampered” ones. He con- tradicts himself. His wartime job at the UK Royal Air Force’s Bomber Command, analysing the effect of Allied firebomb- ing on German cities, left him “All these with a “perma- adventures in nently bad con- this strange new science”. Yet he world are still understood the unreal to me.” joy of German sailors who torpedoed Allied fuel tankers because he felt “elation” when the fire- bombing succeeded. In the late 1950s, he worked with the defence contractor General Atomic in La Jolla, California, on a project he thought would be “legendary”: a space- ship called Orion, ill-advisedly powered by nuclear explosions. Because building it required nuclear testing, he publicly opposed the Nuclear Test Ban Treaty; after Orion was defunded, he supported the treaty. Later, he became president of the anti-nuclear-proliferation Federation of American Scientists. He proposed the ‘no first use’ policy on nuclear weapons, Niels Bohr (left) with Albert Einstein in the late 1920s, when quantum mechanics was in its infancy. while admiring his theoretical-physicist friend Edward Teller for standing against PHYSICS the treaty. Dyson’s contradictions might seem confusing, but I can hear him politely and methodically explaining the rationality of seeing reality from different Quantum-theory wars reference frames, of holding mutually opposing views and of being free to Ramin Skibba explores a history of unresolved change one’s mind. questions beyond the Copenhagen interpretation. The one Dysonian pattern for which the letters hold unequivocal evidence is delight. He uses the word often and ll hell broke loose in physics some cultural, political and invokes it even more: “Today I discov- 90 years ago. Quantum theory economic factors — ered a little theorem which gave me some emerged — partly in heated clashes he explores alterna- intense moments of pleasure. It is beauti- Abetween Albert Einstein and Niels Bohr. tive explanations. ful and fell into my hand like a jewel from It posed a challenge to the very nature of Had events played the sky.” In the book’s last letter, he writes science, and arguably continues to do so, by out differently in the to his sister about being robbed and hit severely straining the relationship between 1920s, he asserts, our on the head. Preparing to die, he notices theory and the nature of reality. Adam view of physics might the sunlight on the bushes and thinks, “life Becker, a science writer and astrophysicist, be very different. has been good to me and this death is also explores this tangled tale in What Is Real?. Becker lingers ARCHIVES/AIP/SPL VISUAL EMILIO SEGRE What Is Real?: The good, with the bright sun and the green Becker questions the hegemony of the Unfinished Quest on the 1927 Solvay bushes”. Copenhagen interpretation of quantum for the Meaning of Conference in Maybe with some people, you don’t mechanics. Propounded by Bohr and Werner Quantum Physics Brussels, where 29 look for patterns. You just enjoy their Heisenberg in the 1920s, this theory holds ADAM BECKER brilliant scientists multivariate company. ■ that physical systems have only probabilities, Basic: 2018. gathered to discuss rather than specific properties, until they’re the fledgling quantum Ann Finkbeiner is a freelance science measured. Becker argues that trying to parse theory. Here, the disagreements between writer in Baltimore, Maryland, and how this interpretation reflects the world Bohr, Einstein and others, including Erwin author of The Jasons. She blogs at www. we live in is an exercise in opacity. Showing Schrödinger and Louis de Broglie, came to a lastwordonnothing.com. that the evolution of science is affected by head. Whereas Bohr proposed that entities e-mail: [email protected] historical events — including sociological, (such as electrons) had only probabilities if 582 | NATURE | VOL 555 | 29 MARCH©20 201818 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2018 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. BOOKS & ARTS COMMENT they weren’t observed, Einstein argued that they had independent reality, prompting his famous claim that “God does not play dice”. Books in brief Years later, he added a gloss: “What we call science has the sole purpose of determining Work: The Last 1,000 Years what is.” Suddenly, scientific realism — Andrea Komlosy, trans. Jacob K. Watson & Loren Balhorn VERSO (2018) the idea that confirmed scientific theories Employment outside the home became the globally dominant form roughly reflect reality — was at stake. of work only after 1900. Yet in policy and discourse, it has eclipsed Quantum phenomena were phenomenally older, more informal modes of production. Social historian Andrea baffling to many. First was wave–particle Komlosy probes the joins between them in this sweeping chronicle, duality, in which light can act as particles and from 1250 — the dawn of globalization and urbanization — to today, particles such as electrons interfere like light when international corporations threaten labour standards. This is a waves. According to Bohr, a system behaves as book teeming with insights, from the contempt for manual labour in a wave or a particle depending on context, but ancient Greece to the historical tendency for all kinds of subsistence you cannot predict which it will do. tasks to be “housewife-ized” into unpaid domestic labour. Second, Heisenberg showed that uncertainty, for instance about a particle’s position and momentum, is hard-wired into The Ascent of John Tyndall physics. Third, Bohr argued that we could Roland Jackson OXFORD UNIVERSITY PRESS (2018) have only probabilistic knowledge of a system: A leading light in climate science, germ theory and magnetism, in Schrödinger’s thought experiment, a cat in Victorian researcher John Tyndall seemed a man for all sciences. He a box is both dead and alive until it is seen. discovered the greenhouse effect and why the sky is blue, and as a Fourth, particles can become entangled. For public intellectual, hobnobbed with physicists Michael Faraday and example, two particles might have opposite Hermann von Helmholtz, and poet Alfred Tennyson. This splendid spins, no matter how far apart they are: if you monument of a biography by Roland Jackson tracks Tyndall’s rise measure one to be spin up, you instantly know from rural Ireland to laboratorial glory days in Britain and Europe. The that the other is spin down. (Einstein called experimentalist’s obscurity now, Jackson avers, may be down in part to this “spooky action at a distance”.) his death in 1893: he just missed the era of relativity and the quantum. Becker explains how these observations challenge locality, causality and determinism. In the classical world of billiard balls, projec- Microbia tiles and apples falling from trees, they were Eugenia Bone RODALE (2018) never problems. At the age of 55, journalist Eugenia Bone returned to university to take Sifting through the history, Becker shows a microbiology course, reasoning that “humility is the entry point for how Bohr, as an anti-realist, brought to studying nature”. The microbial matrix of life came into focus. Bone’s his side many rising physicists, including is an exquisitely observant, often amusing voyage from the origins Heisenberg, Wolfgang Pauli and Max Born. of life to antibiotic resistance, punctuated by scientific revelations. Einstein, however, persistently argued that (The compound geosmin, produced by Streptomyces bacteria, gives the Copenhagen interpretation was incom- soil its sweet smell; bacteria nucleate rain; a quadrillion microbes plete. He conjectured that there might be pack part of a cow’s stomach.) The devil’s in the detail, Bone finds, but hidden variables or processes underlying what enchants is the connectivity of this ‘hidden’ ocean. quantum phenomena; or perhaps ‘pilot waves’, proposed by de Broglie, govern the behaviour of particles. In 1932, mathemati- Elastic: Flexible Thinking in a Constantly Changing World cian John von Neumann produced a proof Leonard Mlodinow PANTHEON (2018) that there could be no hidden variables in Physicist Leonard Mlodinow revels in the neuroscientific. Here he quantum mechanics. Although mathemati- extends his explorations with an in-depth study of agile creative cally correct, it was revealed to be flawed dec- thinking in a hectic age. Among the psychological factors Mlodinow ades later. But the damage had been done: the isolates are a yen for novelty, and the capacity to reconcile diverse potentially viable alternatives conceived by ideas. He plunges deep into the human brain, marshalling Einstein and de Broglie remained relatively compelling research both on brain basics and on outlier issues such unexplored. The Copenhagen interpretation as mental blocks. Perhaps most gripping is his take on the “default had taken hold by the 1930s, and textbooks network” — the brain structures that govern richly creative activities today state that Bohr’s view ‘won’. such as daydreaming, the “dialogue we have with ourselves”. Thus, the Solvay Conference can be seen as a stand-off between two mathematically equivalent but fundamentally different Wild Moms paradigms: Bohr’s instrumentalist view of Carin Bondar PEGASUS (2018) quantum physics and Einstein’s realist one. Biologist and broadcaster Carin Bondar’s tour of the vagaries of In science, a dominant paradigm determines motherhood in the animal kingdom is a thrills-and-spills survey, which experiments are done, how they’re from brood parasitism to cooperative breeding. The diversity of interpreted and what kind of path a research evolutionary solutions to maternality is mind-bending. We learn, programme follows.
Recommended publications
  • Unit 1 Old Quantum Theory
    UNIT 1 OLD QUANTUM THEORY Structure Introduction Objectives li;,:overy of Sub-atomic Particles Earlier Atom Models Light as clectromagnetic Wave Failures of Classical Physics Black Body Radiation '1 Heat Capacity Variation Photoelectric Effect Atomic Spectra Planck's Quantum Theory, Black Body ~diation. and Heat Capacity Variation Einstein's Theory of Photoelectric Effect Bohr Atom Model Calculation of Radius of Orbits Energy of an Electron in an Orbit Atomic Spectra and Bohr's Theory Critical Analysis of Bohr's Theory Refinements in the Atomic Spectra The61-y Summary Terminal Questions Answers 1.1 INTRODUCTION The ideas of classical mechanics developed by Galileo, Kepler and Newton, when applied to atomic and molecular systems were found to be inadequate. Need was felt for a theory to describe, correlate and predict the behaviour of the sub-atomic particles. The quantum theory, proposed by Max Planck and applied by Einstein and Bohr to explain different aspects of behaviour of matter, is an important milestone in the formulation of the modern concept of atom. In this unit, we will study how black body radiation, heat capacity variation, photoelectric effect and atomic spectra of hydrogen can be explained on the basis of theories proposed by Max Planck, Einstein and Bohr. They based their theories on the postulate that all interactions between matter and radiation occur in terms of definite packets of energy, known as quanta. Their ideas, when extended further, led to the evolution of wave mechanics, which shows the dual nature of matter
    [Show full text]
  • Hendrik Antoon Lorentz's Struggle with Quantum Theory A. J
    Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Archive for History of Exact Sciences ISSN 0003-9519 Volume 67 Number 2 Arch. Hist. Exact Sci. (2013) 67:149-170 DOI 10.1007/s00407-012-0107-8 1 23 Your article is published under the Creative Commons Attribution license which allows users to read, copy, distribute and make derivative works, as long as the author of the original work is cited. You may self- archive this article on your own website, an institutional repository or funder’s repository and make it publicly available immediately. 1 23 Arch. Hist. Exact Sci. (2013) 67:149–170 DOI 10.1007/s00407-012-0107-8 Hendrik Antoon Lorentz’s struggle with quantum theory A. J. Kox Received: 15 June 2012 / Published online: 24 July 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract A historical overview is given of the contributions of Hendrik Antoon Lorentz in quantum theory. Although especially his early work is valuable, the main importance of Lorentz’s work lies in the conceptual clarifications he provided and in his critique of the foundations of quantum theory. 1 Introduction The Dutch physicist Hendrik Antoon Lorentz (1853–1928) is generally viewed as an icon of classical, nineteenth-century physics—indeed, as one of the last masters of that era. Thus, it may come as a bit of a surprise that he also made important contribu- tions to quantum theory, the quintessential non-classical twentieth-century develop- ment in physics. The importance of Lorentz’s work lies not so much in his concrete contributions to the actual physics—although some of his early work was ground- breaking—but rather in the conceptual clarifications he provided and his critique of the foundations and interpretations of the new ideas.
    [Show full text]
  • Wave Nature of Matter: Made Easy (Lesson 3) Matter Behaving As a Wave? Ridiculous!
    Wave Nature of Matter: Made Easy (Lesson 3) Matter behaving as a wave? Ridiculous! Compiled by Dr. SuchandraChatterjee Associate Professor Department of Chemistry Surendranath College Remember? I showed you earlier how Einstein (in 1905) showed that the photoelectric effect could be understood if light were thought of as a stream of particles (photons) with energy equal to hν. I got my Nobel prize for that. Louis de Broglie (in 1923) If light can behave both as a wave and a particle, I wonder if a particle can also behave as a wave? Louis de Broglie I’ll try messing around with some of Einstein’s formulae and see what I can come up with. I can imagine a photon of light. If it had a “mass” of mp, then its momentum would be given by p = mpc where c is the speed of light. Now Einstein has a lovely formula that he discovered linking mass with energy (E = mc2) and he also used Planck’s formula E = hf. What if I put them equal to each other? mc2 = hf mc2 = hf So for my photon 2 mp = hfhf/c/c So if p = mpc = hfhf/c/c p = mpc = hf/chf/c Now using the wave equation, c = fλ (f = c/λ) So mpc = hc /λc /λc= h/λ λ = hp So you’re saying that a particle of momentum p has a wavelength equal to Planck’s constant divided by p?! Yes! λ = h/p It will be known as the de Broglie wavelength of the particle Confirmation of de Broglie’s ideas De Broglie didn’t have to wait long for his idea to be shown to be correct.
    [Show full text]
  • Einstein's Mistakes
    Einstein’s Mistakes Einstein was the greatest genius of the Twentieth Century, but his discoveries were blighted with mistakes. The Human Failing of Genius. 1 PART 1 An evaluation of the man Here, Einstein grows up, his thinking evolves, and many quotations from him are listed. Albert Einstein (1879-1955) Einstein at 14 Einstein at 26 Einstein at 42 3 Albert Einstein (1879-1955) Einstein at age 61 (1940) 4 Albert Einstein (1879-1955) Born in Ulm, Swabian region of Southern Germany. From a Jewish merchant family. Had a sister Maja. Family rejected Jewish customs. Did not inherit any mathematical talent. Inherited stubbornness, Inherited a roguish sense of humor, An inclination to mysticism, And a habit of grüblen or protracted, agonizing “brooding” over whatever was on its mind. Leading to the thought experiment. 5 Portrait in 1947 – age 68, and his habit of agonizing brooding over whatever was on its mind. He was in Princeton, NJ, USA. 6 Einstein the mystic •“Everyone who is seriously involved in pursuit of science becomes convinced that a spirit is manifest in the laws of the universe, one that is vastly superior to that of man..” •“When I assess a theory, I ask myself, if I was God, would I have arranged the universe that way?” •His roguish sense of humor was always there. •When asked what will be his reactions to observational evidence against the bending of light predicted by his general theory of relativity, he said: •”Then I would feel sorry for the Good Lord. The theory is correct anyway.” 7 Einstein: Mathematics •More quotations from Einstein: •“How it is possible that mathematics, a product of human thought that is independent of experience, fits so excellently the objects of physical reality?” •Questions asked by many people and Einstein: •“Is God a mathematician?” •His conclusion: •“ The Lord is cunning, but not malicious.” 8 Einstein the Stubborn Mystic “What interests me is whether God had any choice in the creation of the world” Some broadcasters expunged the comment from the soundtrack because they thought it was blasphemous.
    [Show full text]
  • Ripples in Spacetime
    editorial Ripples in spacetime The 2017 Nobel prize in Physics has been awarded to Rainer Weiss, Barry C. Barish and Kip S. Thorne “for decisive contributions to the LIGO detector and the observation of gravitational waves”. It is, frankly, difficult to find something original to say about the detection of gravitational waves that hasn’t been said already. The technological feat of measuring fluctuations in the fabric of spacetime less than one-thousandth the width of an atomic nucleus is quite simply astonishing. The scientific achievement represented by the confirmation of a century-old prediction by Albert Einstein is unique. And the collaborative effort that made the discovery possible — the Laser Interferometer Gravitational-Wave Observatory (LIGO) — is inspiring. Adapted from Phys. Rev. Lett. 116, 061102 (2016), under Creative Commons Licence. Rainer Weiss and Kip Thorne were, along with the late Ronald Drever, founders of the project that eventually became known Barry Barish, who was the director Last month we received a spectacular as LIGO. In the 1960s, Thorne, a black hole of LIGO from 1997 to 2005, is widely demonstration that talk of a new era expert, had come to believe that his objects of credited with transforming it into a ‘big of gravitational astronomy was no interest should be detectable as gravitational physics’ collaboration, and providing the exaggeration. Cued by detections at LIGO waves. Separately, and inspired by previous organizational structure required to ensure and Virgo, an interferometer based in Pisa, proposals, Weiss came up with the first it worked. Of course, the passion, skill and Italy, more than 70 teams of researchers calculations detailing how an interferometer dedication of the thousand or so scientists working at different telescopes around could be used to detect them in 1972.
    [Show full text]
  • I. I. Rabi Papers [Finding Aid]. Library of Congress. [PDF Rendered Tue Apr
    I. I. Rabi Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1992 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998009 LC Online Catalog record: http://lccn.loc.gov/mm89076467 Prepared by Joseph Sullivan with the assistance of Kathleen A. Kelly and John R. Monagle Collection Summary Title: I. I. Rabi Papers Span Dates: 1899-1989 Bulk Dates: (bulk 1945-1968) ID No.: MSS76467 Creator: Rabi, I. I. (Isador Isaac), 1898- Extent: 41,500 items ; 105 cartons plus 1 oversize plus 4 classified ; 42 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and educator. The collection documents Rabi's research in physics, particularly in the fields of radar and nuclear energy, leading to the development of lasers, atomic clocks, and magnetic resonance imaging (MRI) and to his 1944 Nobel Prize in physics; his work as a consultant to the atomic bomb project at Los Alamos Scientific Laboratory and as an advisor on science policy to the United States government, the United Nations, and the North Atlantic Treaty Organization during and after World War II; and his studies, research, and professorships in physics chiefly at Columbia University and also at Massachusetts Institute of Technology. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein.
    [Show full text]
  • A Brief History of Gravitational Waves
    universe Review A Brief History of Gravitational Waves Jorge L. Cervantes-Cota 1, Salvador Galindo-Uribarri 1 and George F. Smoot 2,3,4,* 1 Department of Physics, National Institute for Nuclear Research, Km 36.5 Carretera Mexico-Toluca, Ocoyoacac, C.P. 52750 Mexico, Mexico; [email protected] (J.L.C.-C.); [email protected] (S.G.-U.) 2 Helmut and Ana Pao Sohmen Professor at Large, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, China 3 Université Sorbonne Paris Cité, Laboratoire APC-PCCP, Université Paris Diderot, 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13, France 4 Department of Physics and LBNL, University of California; MS Bldg 50-5505 LBNL, 1 Cyclotron Road Berkeley, 94720 CA, USA * Correspondence: [email protected]; Tel.:+1-510-486-5505 Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 21 July 2016; Accepted: 2 September 2016; Published: 13 September 2016 Abstract: This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery. Keywords: gravitational waves; General Relativity; LIGO; Einstein; strong-field gravity; binary black holes 1. Introduction Einstein’s General Theory of Relativity, published in November 1915, led to the prediction of the existence of gravitational waves that would be so faint and their interaction with matter so weak that Einstein himself wondered if they could ever be discovered.
    [Show full text]
  • Science & ROGER PENROSE
    Science & ROGER PENROSE Live Webinar - hosted by the Center for Consciousness Studies August 3 – 6, 2021 9:00 am – 12:30 pm (MST-Arizona) each day 4 Online Live Sessions DAY 1 Tuesday August 3, 2021 9:00 am to 12:30 pm MST-Arizona Overview / Black Holes SIR ROGER PENROSE (Nobel Laureate) Oxford University, UK Tuesday August 3, 2021 9:00 am – 10:30 am MST-Arizona Roger Penrose was born, August 8, 1931 in Colchester Essex UK. He earned a 1st class mathematics degree at University College London; a PhD at Cambridge UK, and became assistant lecturer, Bedford College London, Research Fellow St John’s College, Cambridge (now Honorary Fellow), a post-doc at King’s College London, NATO Fellow at Princeton, Syracuse, and Cornell Universities, USA. He also served a 1-year appointment at University of Texas, became a Reader then full Professor at Birkbeck College, London, and Rouse Ball Professor of Mathematics, Oxford University (during which he served several 1/2-year periods as Mathematics Professor at Rice University, Houston, Texas). He is now Emeritus Rouse Ball Professor, Fellow, Wadham College, Oxford (now Emeritus Fellow). He has received many awards and honorary degrees, including knighthood, Fellow of the Royal Society and of the US National Academy of Sciences, the De Morgan Medal of London Mathematical Society, the Copley Medal of the Royal Society, the Wolf Prize in mathematics (shared with Stephen Hawking), the Pomeranchuk Prize (Moscow), and one half of the 2020 Nobel Prize in Physics, the other half shared by Reinhard Genzel and Andrea Ghez.
    [Show full text]
  • 2018 Annual Report Alfred P
    2018 Annual Report Alfred P. Sloan Foundation $ 2018 Annual Report Contents Preface II Mission Statement III From the President IV The Year in Discovery VI About the Grants Listing 1 2018 Grants by Program 2 2018 Financial Review 101 Audited Financial Statements and Schedules 103 Board of Trustees 133 Officers and Staff 134 Index of 2018 Grant Recipients 135 Cover: The Sloan Foundation Telescope at Apache Point Observatory, New Mexico as it appeared in May 1998, when it achieved first light as the primary instrument of the Sloan Digital Sky Survey. An early set of images is shown superimposed on the sky behind it. (CREDIT: DAN LONG, APACHE POINT OBSERVATORY) I Alfred P. Sloan Foundation $ 2018 Annual Report Preface The ALFRED P. SLOAN FOUNDATION administers a private fund for the benefit of the public. It accordingly recognizes the responsibility of making periodic reports to the public on the management of this fund. The Foundation therefore submits this public report for the year 2018. II Alfred P. Sloan Foundation $ 2018 Annual Report Mission Statement The ALFRED P. SLOAN FOUNDATION makes grants primarily to support original research and education related to science, technology, engineering, mathematics, and economics. The Foundation believes that these fields—and the scholars and practitioners who work in them—are chief drivers of the nation’s health and prosperity. The Foundation also believes that a reasoned, systematic understanding of the forces of nature and society, when applied inventively and wisely, can lead to a better world for all. III Alfred P. Sloan Foundation $ 2018 Annual Report From the President ADAM F.
    [Show full text]
  • The Concept of the Photon—Revisited
    The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser.
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]
  • Theory and Experiment in the Quantum-Relativity Revolution
    Theory and Experiment in the Quantum-Relativity Revolution expanded version of lecture presented at American Physical Society meeting, 2/14/10 (Abraham Pais History of Physics Prize for 2009) by Stephen G. Brush* Abstract Does new scientific knowledge come from theory (whose predictions are confirmed by experiment) or from experiment (whose results are explained by theory)? Either can happen, depending on whether theory is ahead of experiment or experiment is ahead of theory at a particular time. In the first case, new theoretical hypotheses are made and their predictions are tested by experiments. But even when the predictions are successful, we can’t be sure that some other hypothesis might not have produced the same prediction. In the second case, as in a detective story, there are already enough facts, but several theories have failed to explain them. When a new hypothesis plausibly explains all of the facts, it may be quickly accepted before any further experiments are done. In the quantum-relativity revolution there are examples of both situations. Because of the two-stage development of both relativity (“special,” then “general”) and quantum theory (“old,” then “quantum mechanics”) in the period 1905-1930, we can make a double comparison of acceptance by prediction and by explanation. A curious anti- symmetry is revealed and discussed. _____________ *Distinguished University Professor (Emeritus) of the History of Science, University of Maryland. Home address: 108 Meadowlark Terrace, Glen Mills, PA 19342. Comments welcome. 1 “Science walks forward on two feet, namely theory and experiment. ... Sometimes it is only one foot which is put forward first, sometimes the other, but continuous progress is only made by the use of both – by theorizing and then testing, or by finding new relations in the process of experimenting and then bringing the theoretical foot up and pushing it on beyond, and so on in unending alterations.” Robert A.
    [Show full text]