Franconia – Before the Gold Rush by Robert Verish

Total Page:16

File Type:pdf, Size:1020Kb

Franconia – Before the Gold Rush by Robert Verish Meteorite Times Magazine Contents by Editor Featured Monthly Articles Accretion Desk by Martin Horejsi Jim's Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob's Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Meteorite Calendar by Anne Black Meteorite of the Month by Editor Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2011 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner. Meteorite Times Magazine Mundrabillia, Australia: Where it all began. by Martin Horejsi Where it all began: Mundrabillia, Australia The etched face of of this 69g end section of Mundrabillia brought joy to its owner, and the touchable wonders of space to hundreds if not thousands of students in its several decades as the cornerstone of my collection. Twenty or so years ago, I bought my first meteorite, an etched end section of Mundrabillia, and the magic began. The iron was purchased as a teaching aid to share with students who were learning about space science. The specimen came from David New and was chosen under his guidance as a nice, affordable example of a meteorite that would serve my needs well. He was right. But instead of being one of the many buyers of a meteorite who never make the turn to a former collector of meteorites, I followed his suggestions for the next decade buying almost everything he suggested. And he was never wrong as far as I was concerned. While the etched piece of Mundrabilla was my first meteorite, this was the first specimen card in my collection. Back in those days of long-distance telephone fees and no internet, meteorite were advertised in mailings, and inquires were made one at a time over the phone. It didn’t take the collector long to learn that what was listed in the mailed flyer was likely just a sample of what was available. Once on the phone with the dealer, the true scope of the potential offerings came into focus. Decision making back then contained the elements of one-on-one attention. If I was on the phone with David, then at that moment, I was first in line for whatever he had to offer. On more than one occasion I passed on buying a sample David suggested only to call back a few hours or a day later only to learn it had sold minutes after I hung up. Is that rust or dirt? On achondrites like Millbillillie its obvious, but on irons like Henbury, Boxhole and Mundrabillia its not so obvious. Mostly its rust. Sometimes it a combination of the two. And in those wonderful non- sanatized examples, its authentic Australian soil which just happened to be the only documented witness to the fall of Mundrabillia. For me, those early days of meteorite collecting were truly magical. For many of us, the only specimens we knew of where in museums and our own collections. It took the internet to provide a global venue for sharing our collections with each other. The internet has also dramatically changed our was of exchanging meteorites. Pictures are a must, and instead of a tens or hundreds possible buyers receiving a listing in the mail, there is no ceiling to the number of people who can view a meteorite offering, which of course also means the collector is considerably more savvy with market values and available specimens. But in the long run it is the relationships and stories the meteorites fostered that really make collecting a joy. As 2012 greets us, I will be again taking a break from writing my Accretion Desk columns with the detail I usually put in to my tales. Many projects are taxing my time so even carving out the small handful of hours needed to create an Accretion Desk has become a challenge. I want to enjoy spinning my meteorite yarns, and with m time constraints right now, I see no option but go to to a more simplified type of Accretion Desk. And I’m just as excited to see what that is as you are. Until next time…. The Accretion Desk welcomes all comments and feedback. [email protected] Meteorite Times Magazine Alamo Breccia 2011 by Jim Tobin As I write this I am hoping I will have enough new material to offer from our second visit to the Alamo Breccia that I did not say in the original Alamo Breccia article of November 2002. But, I guess I will start by saying that when we were there a few weeks ago I thought it had only been 8 years. Then I looked at the magazine back issues and found to my surprise that it had been ten years ago. I looked over the original article and said to myself that is pretty good, I clearly had more time in my life to do research and to spend on writing. But, I will give it a shot anyway again this month. The Alamo Breccia is a prominent layer of rock that can be traced visually for a long distance undulating from ridge to ridge and mountain to mountain over a wide area of Nevada. Mostly a gray color it is seen usually as two close together thick bands of rocks with some thinner layers added. Up close investigation shows these apparently separate layers to actually be from the same event. At the Hancock Summit site the exposures are easy to find visually. However, to get up onto the top of one of them is a good hike up steep terrain. You will be making your own path most of the way since there is not a real trail to follow. So pick a rate of climb that you are comfortable with and then make your way from boulder to boulder up to the top of the ridge. A portion of the rocks projects forward as a separate prominence. The remainder of the mountain rises behind you. From there you can stand and look out over the valley. I am really uncomfortable up on top of the ridge. I managed to get up there but did not stay long. I retreated to a spot just a little lower where I could collect specimens from the side of the exposure rather then off the very top. Paul up on top of the layer where I did not stay long On our way up we had determined to find the stromatolites. We had missed the best deposit the first trip. So after photographing the single petroglyph that I showed in last month’s article we made sure to find the stromatolites. We knew they were near the bottom of the mountain. We began hiking up a little more westward this trip and found the stromatolites pretty easy. We also immediately saw that there had been a lot of core sampling done since we were there last. In several places numerous cores had been removed. Paul suggested that there may have been so many done in order to provide each person in a large group a core of their own. That makes quite a bit of sense. There were more cores taken then needed for dating or other analysis, dozens. From the top of the ridge you get a great view out toward Area 51 and part way around the valley that leads ultimately after a few more mountains to Rachel, Nevada. As I said at the beginning the layer of Alamo Breccia can be visually traced from ridge to ridge and across the intervening valleys and washes. I had been noticing what I was sure was the continuation of the layers on the other side of the road from where we parked. After eating lunch we headed across the road. The Alamo Breccia there was tilted much flatter showing more surface of each layer. It was much like playing cards fanned out rather than the cliff-like exposure of the entire thickness on the other ridge. But, like the exposure of the morning hike if you when farther around the hill it too became a cliff as can be seen in the following picture. On the previous trip years ago we had hiked over to the next mountain in the other direction, about, I would say half a mile away southward from the high difficult ridge. There the rocks were slightly different again. In this part of Nevada it is not hard to find the Alamo Breccia.
Recommended publications
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • Handbook of Iron Meteorites, Volume 3 (Pima County – Ponca Creek)
    974 Piedade do Bagre - Pima County Schreibersite is almost absent, but may be found as short, 5-l 0 J.1 wide grain boundary folia. Rhabdites are not observed. The bulk phosphorus content is estimated to be A between 0.05 and 0.10%. Troilite is scattered as small nodules and lenticular bodies, ranging from I to 5 mm in size. They occur with a frequency of about one per 20 cm2 , and contain 10-20% daubreelite in the form of parallel bars, 0.1-0.5 mm wide. Spencer & Hey (1930) reported cohenite, but this could not be confirmed. Piedade do Bagre is a somewhat annealed, medium octahedrite with an anomalously small bandwidth if com­ pared to Hen bury, Costilla Peak, Wabar and other irons of similar composition. The trace-element determination indi­ cates that it is in some degree related to these irons; Wasson (personal communication) feels, however, that it should be earmarked anomalous, since its combination of Ni, Ga, Ge and Ir places it outside the normal IliA range. This conclusion is supported by the bandwidth-Ni combination which is anomalous, too. Figure 1367. Pima County (U.S.N.M. no. 1447). The meteorite, originally a hexahedrite, is recrystallized due to shock and the Specimen in the U.S, National Museum in Washington: associated reheating. A heat-affected rim zone is present along the 398 g (no. 1559, 12 x 8.5 x 0.5 em) edge A-A. Imperfectly polished, black patches are due to corrosion. Deep-etched. Scale bar 10 mm. (Perry 1950: volume 7.) HISTORY Pierceville (iron), Kansas, U.S.A.
    [Show full text]
  • ELEMENTAL ABUNDANCES in the SILICATE PHASE of PALLASITIC METEORITES Redacted for Privacy Abstract Approved: Roman A
    AN ABSTRACT OF THE THESIS OF THURMAN DALE COOPER for theMASTER OF SCIENCE (Name) (Degree) in CHEMISTRY presented on June 1, 1973 (Major) (Date) Title: ELEMENTAL ABUNDANCES IN THE SILICATE PHASE OF PALLASITIC METEORITES Redacted for privacy Abstract approved: Roman A. Schmitt The silicate phases of 11 pallasites were analyzed instrumen- tally to determine the concentrations of some major, minor, and trace elements.The silicate phases were found to contain about 98% olivine with 1 to 2% accessory minerals such as lawrencite, schreibersite, troilite, chromite, and farringtonite present.The trace element concentrations, except Sc and Mn, were found to be extremely low and were found primarily in the accessory phases rather than in the pure olivine.An unusual bimodal Mn distribution was noted in the pallasites, and Eagle Station had a chondritic nor- malized REE pattern enrichedin the heavy REE. The silicate phases of pallasites and mesosiderites were shown to be sufficiently diverse in origin such that separate classifications are entirely justified. APPROVED: Redacted for privacy Professor of Chemistry in charge of major Redacted for privacy Chairman of Department of Chemistry Redacted for privacy Dean of Graduate School Date thesis is presented June 1,1973 Typed by Opal Grossnicklaus for Thurman Dale Cooper Elemental Abundances in the Silicate Phase of Pallasitic Meteorites by Thurman Dale Cooper A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science June 1974 ACKNOWLEDGMENTS The author wishes to express his gratitude to Prof. Roman A. Schmitt for his guidance, suggestions, discussions, and thoughtful- ness which have served as an inspiration.
    [Show full text]
  • Meteorite Collections: Sample List
    Meteorite Collections: Sample List Institute of Meteoritics Department of Earth and Planetary Sciences University of New Mexico October 01, 2021 Institute of Meteoritics Meteorite Collection The IOM meteorite collection includes samples from approximately 600 different meteorites, representative of most meteorite types. The last printed copy of the collection's Catalog was published in 1990. We will no longer publish a printed catalog, but instead have produced this web-based Online Catalog, which presents the current catalog in searchable and downloadable forms. The database will be updated periodically. The date on the front page of this version of the catalog is the date that it was downloaded from the worldwide web. The catalog website is: Although we have made every effort to avoid inaccuracies, the database may still contain errors. Please contact the collection's Curator, Dr. Rhian Jones, ([email protected]) if you have any questions or comments. Cover photos: Top left: Thin section photomicrograph of the martian shergottite, Zagami (crossed nicols). Brightly colored crystals are pyroxene; black material is maskelynite (a form of plagioclase feldspar that has been rendered amorphous by high shock pressures). Photo is 1.5 mm across. (Photo by R. Jones.) Top right: The Pasamonte, New Mexico, eucrite (basalt). This individual stone is covered with shiny black fusion crust that formed as the stone fell through the earth's atmosphere. Photo is 8 cm across. (Photo by K. Nicols.) Bottom left: The Dora, New Mexico, pallasite. Orange crystals of olivine are set in a matrix of iron, nickel metal. Photo is 10 cm across. (Photo by K.
    [Show full text]
  • The Meteoritical Society Committee on Meteorite Nomenclature
    THE METEORITICAL SOCIETY COMMITTEE ON METEORITE NOMENCLATURE GUIDELINES FOR METEORITE NOMENCLATURE FEBRUARY 1980 Revised October 2000; October 2004; April 2005; October 2006; July 2010; March 2011; December 2011; May 2012; July 2012; August 2012; February 2015; July 2015; March 2019 [Addition of §4.2c] Contents GUIDELINES FOR METEORITE NOMENCLATURE ............................................................... 1 1. INTRODUCTION ................................................................................................................... 2 1.1 Objectives. ......................................................................................................................... 2 1.2 Scope. ................................................................................................................................ 2 2. APPLICATION AND REQUIREMENTS OF A METEORITE NAME ............................... 3 2.1 Unique names. ................................................................................................................... 3 2.2 Distinctive names. ............................................................................................................. 3 2.3 Precedents. ......................................................................................................................... 3 2.4 International usage............................................................................................................. 4 3. NEW METEORITE NAMES ................................................................................................
    [Show full text]
  • Trace Element Chemistry of Cumulus Ridge 04071 Pallasite with Implications for Main Group Pallasites
    Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites Item Type Article; text Authors Danielson, L. R.; Righter, K.; Humayun, M. Citation Danielson, L. R., Righter, K., & Humayun, M. (2009). Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites. Meteoritics & Planetary Science, 44(7), 1019-1032. DOI 10.1111/j.1945-5100.2009.tb00785.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 23/09/2021 14:17:54 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656592 Meteoritics & Planetary Science 44, Nr 7, 1019–1032 (2009) Abstract available online at http://meteoritics.org Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites Lisa R. DANIELSON1*, Kevin RIGHTER2, and Munir HUMAYUN3 1Mailcode JE23, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA 2Mailcode KT, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA 3National High Magnetic Field Laboratory and Department of Geological Sciences, Florida State University, Tallahassee, Florida 32310, USA *Corresponding author. E-mail: [email protected] (Received 06 November 2008; revision accepted 11 May 2009) Abstract–Pallasites have long been thought to represent samples from the metallic core–silicate mantle boundary of a small asteroid-sized body, with as many as ten different parent bodies recognized recently. This report focuses on the description, classification, and petrogenetic history of pallasite Cumulus Ridge (CMS) 04071 using electron microscopy and laser ablation ICP-MS.
    [Show full text]
  • Mineralogical and Petrographical Study of the Zaisho Meteorite, a Pallasite from Japan
    Mineralogical and Petrographical Study of the Zaisho Meteorite, a Pallasite from Japan Makoto Shima, A. Okada, and H. Yabuki The Institute of Physical and Chemical Research, Wako, Saitama, Japan Z. Naturforsch. 35a, 64-68 (1980); received September 12, 1979 Dedicated to Prof. Dr. H. Hintenberger on the occasion of his 70th birthday The Zaisho meteorite, a pallasite from Japan, is primarily composed of nickel-iron and olivine, and contains minor amounts of troilite, schreibersite, chromite and farringtonite. The olivine of this meteorite is Fai8.6 in molar composition, and exhibits non-rounded morphology. About 17% of the olivines are kinked crystals. The formational temperature was estimated to be 1220 °C from the Mg-Fe2+ distribution coefficient in the coexisting olivine-ehromite pair. 1. Introduction polarizing microscope in the reflecting light. A few pieces of polished sections and thin sections of The pallasite consisting primarily of nickel-iron individual mineral phases were also prepared both and olivine is a rare type of meteorite and provides for microscopic examination and for electron probe significant information on the deep-seated material microanalysis. Optic axial angle and optical in asteroidal bodies of the solar system. According orientation of transparent minerals in the thin to Hutchison et al. [1], fifty one listed pallasites section were measured using a universal stage fixed did exist in 1977. One pallasite has recently been on the microscope stage. Measurement of refractive identified among Antarctic meteorites [2]. The indices of olivine and phosphate mineral was carried Zaisho meteorite, the only pallasite from Japan, is out by the oil-immersion method under the polariz- one of the rare samples of pallasite which were ing microscope.
    [Show full text]
  • Major Increase in Total Known Weight for Danby Dry Lake (H6) California Meteorite
    72nd Annual Meteoritical Society Meeting (2009) 5054.pdf MAJOR INCREASE IN TOTAL KNOWN WEIGHT FOR DANBY DRY LAKE (H6) CALIFORNIA METEORITE. R. S. Verish1. 1Meteorite-Recovery Lab. E-mail: bo- [email protected]. Introduction: The first mass of Danby Dry Lake (131 g) was found 2000 September 17th by Mr. Bill Peters of Phoenix, AZ in an area that would be best described as a prior shoreline of Danby Lake. A partial type specimen was submitted to ASU and after being classified (H6 breccia with rounded clasts) Danby Dry Lake first appeared in Meteoritical Bulletin (MetBull) No. 85 [1]. The coordinates listed in MetBull No. 85 were incorrect; the correct ones appeared in MetBull No. 86 [2]. Recovery Information: On May 2nd of 2008, while search- ing in the area of these coordinates for more masses of this mete- orite, this author found several small fragments in a recently dug pit. After some investigation it was discovered that the area around this pit was the site where over 526 fragments of the Danby Dry Lake chondrite were previously recovered [3]. Al- though the recovery of these fragments was documented by the finder in the referenced publication, the actual locality name was not mentioned. The finder has subsequently confirmed that his find location is 500m from the original Danby Dry Lake locality [4]. Discussion: This abstract documents that additional masses of the Danby Dry Lake meteorite were found on two occasions in November of 2006, which now raises the Total Known Weight (TKW) to over 8991 grams. A cluster of over 526 fragments was centered on N34°13.237' W115°03.178' along with an individual mass of 732 grams located a short distance to the southwest at N34°13.220' W115°03.204'.
    [Show full text]
  • Fireball Trajectory, Photometry, Dynamics, Fragmentation, Orbit, and Meteorite Recovery
    The Žďár nad Sázavou meteorite fall: Fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery Pavel Spurný1*, Jiří Borovička1, Lukáš Shrbený1 1Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 25165 Ondřejov Observatory, Czech Republic *Corresponding author. E-mail: [email protected] Abstract We report a comprehensive analysis of the instrumentally observed meteorite fall Žďár nad Sázavou, which occurred in the Czech Republic on 9 December 2014 at 16:16:45-54 UT. The original meteoroid with an estimated initial mass of 150 kg entered the atmosphere with a speed of 21.89 km s-1 and began a luminous trajectory at an altitude of 98.06 km. At the maximum, it reached -15.26 absolute magnitude and terminated after an 9.16 s and 170.5 km long flight at an altitude of 24.71 km with a speed of 4.8 km/s. The average slope of the atmospheric trajectory to the Earth’s surface was only 25.66°. Before its collision with Earth, the initial meteoroid orbited the Sun on a moderately eccentric orbit with perihelion near Venus orbit, aphelion in the outer main belt, and low inclination. During the atmospheric entry, the meteoroid severely fragmented at a very low dynamic pressure 0.016 MPa and further multiple fragmentations occurred at 1.4 – 2.5 MPa. Based on our analysis, so far three small meteorites classified as L3.9 ordinary chondrites totaling 87 g have been found almost exactly in the locations predicted for a given mass. Because of very high quality of photographic and radiometric records, taken by the dedicated instruments of the Czech part of the European Fireball Network, Žďár nad Sázavou belongs to the most reliably, accurately, and thoroughly described meteorite falls in history.
    [Show full text]
  • The Ellerslie Meteorite: Description and Correction to Historical Find Site
    Journal & Proceedings of the Royal Society of New South Wales, vol. 154, part 1, 2021, pp. 12–23. ISSN 0035-9173/21/010012-12 The Ellerslie Meteorite: Description and correction to historical find site William D. Birch Geosciences, Museums Victoria, Melbourne, Australia Email: [email protected] Abstract The 10.2 kg Ellerslie meteorite was donated to the National Museum of Victoria in May 1905 by Mr Henry Crawford, who informed the curator at that time that it had been found on the Ellerslie Estate in August 1900. The Ellerslie Estate, which Mr Crawford co-owned, is some 40 km east of Enngonia in northern New South Wales, adjacent to the Queensland border. In an unexplained historical error, the official find site for the Ellerslie meteorite has been recorded as “Tego, Maranoa, Queensland” in the 2000 Catalogue of Meteorites. This paper provides the first formal description of the meteorite, confirming it as an L5 ordinary chondrite showing mild shock features. It also investigates the source of the error in the historical record of the find site. Keywords: Ellerslie meteorite, find site, historical error, L5 ordinary chondrite, Tego. Introduction list of Australian meteorites. In the resulting Historical background paper, published in the Australian Museum Memoirs in 1939, Hodge-Smith stated that n 27 May 1905, Mr Henry Crawford the meteorite was “known 1905” from the paid a visit to the National Museum O Ellerslie Estate, “about 80 miles north of of Victoria (NMV) in Melbourne. He had a Bourke, New South Wales,” which was the gift for the museum, a large and heavy (10.2 locality as entered in the NMV’s register.
    [Show full text]
  • Machine Learning for Semi-Automated Meteorite Recovery
    Machine Learning for Semi-Automated Meteorite Recovery Seamus Anderson1*, Martin Towner1, Phil Bland1, Christopher Haikings2,3, William Volante4, Eleanor Sansom1, Hadrien Devillepoix1, Patrick Shober1, Benjamin Hartig1, Martin Cupak1, Trent Jansen- Sturgeon1, Robert Howie1, Gretchen Benedix1, Geoff Deacon5 1Space Science and Technology Center, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 2Spectre UAV Concepts, 191 St Georges Terrace, Perth, WA 6000, Australia 3Amotus Pty Ltd, Level 25/71 Eagle St, Brisbane City, QLD 4000, Australia 4Department of Psychology, Clemson University, 418 Brackett Hall, Clemson, SC, 29634 5Western Australian Museum, 49 Kew St, Welshpool, WA 6106, Australia *Corresponding author: E-mail: [email protected]. Abstract We present a novel methodology for recovering meteorite falls observed and constrained by fireball networks, using drones and machine learning algorithms. This approach uses images of the local terrain for a given fall site to train an artificial neural network, designed to detect meteorite candidates. We have field tested our methodology to show a meteorite detection rate between 75-97%, while also providing an efficient mechanism to eliminate false-positives. Our tests at a number of locations within Western Australia also showcase the ability for this training scheme to generalize a model to learn localized terrain features. Our model-training approach was also able to correctly identify 3 meteorites in their native fall sites, that were found using traditional searching techniques. Our methodology will be used to recover meteorite falls in a wide range of locations within globe- spanning fireball networks. Introduction Fireballs and meteors have been observed since antiquity by Chinese, Korean, Babylonian and Roman astronomers (Bjorkman 1973), while meteorites and their unique metallurgical properties have also been known and used by various cultures around the world from Inuit tools (Rickard 1941) to an Egyptian ceremonial dagger (Comelli et al.
    [Show full text]
  • List of Indian Meteorites
    290 List of Indian meteorites. (With Plate XII.) By C. A. SI~.RRAD, B.A., B.Sc. Indian Civil Service (retired). [Communicated by Dr. L. J. Spencer, F.R.S., read November 1, 1932.] N the suggestion of, and with much assistance from, Dr. L. J. Spencer, Keeper of Minerals in the British Museum,1 I have examined and, as far as possible, verified and corrected the recorded places of fall of all reported Indian meteorites. The original records were consulted, and as far as possible the places found on the large scale (usually 1 inch = 1 mile) maps in the India Office. This left a residuum regarding which inquiries were made of District Officers in India, to several of whom I am indebted for useful information which has been embodied in the list. In this list the falls are entered under their original names in alphabetical order by Provinces in British India, but in one list for all the Indian States, and the positions are indicated on the map (plate XII). The correct names of the places of fall are given in each case, in some only the spelling has required correction in accor- dance with the Government of India standard system, ~ in others the vernacular name has clearly been mistransliterated, and in many cases the name of the district or province has been changed since the fall. Wherever possible the exact date and time of fall, the latitude and longitude of the place thereof, and its distance from some big place or railway station have been given. i The large series of Indian meteorites preserved in the British Museum includes representatives of 86 of the 106 recorded falls, with many exceptional specimens; e.g.
    [Show full text]