Bryophytes of Adjacent Serpentine and Granite Outcrops on the Deer Isles, Maine, U.S.A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vertical Distribution of Epiphytic Bryophytes Depends on Phorophyte Type; a Case Study from Windthrows in Kampinoski National Park (Central Poland)
Folia Cryptog. Estonica, Fasc. 57: 59–71 (2020) https://doi.org/10.12697/fce.2020.57.08 Vertical distribution of epiphytic bryophytes depends on phorophyte type; a case study from windthrows in Kampinoski National Park (Central Poland) Barbara Fojcik1*, Damian Chmura2 1Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, 28 Jagiellońska St., 40-032 Kato- wice, Poland. E-mail: [email protected] 2Institute of Environmental Protection and Engineering, University of Bielsko-Biala, 2 Willowa St., 43-309 Bielsko-Biała, Poland. E-mail: [email protected] *Author for correspondence Abstract: The vertical distribution of epiphytic bryophytes in European forests are still relatively poorly understood. The aim of the study was to analyse the diversity and vertical zonation of epiphytic mosses and liverworts on selected tree types (Quercus petraea, Betula pendula and Pinus sylvestris) within windthrow areas in the Kampinoski National Park (Central Poland). The investigations were performed in five parts of the trees: the tree base, lower trunk, upper trunk, lower crown, and upper crown. Deciduous trees have more species than pine trees (13 on Quercus and Betula, 8 on Pinus). The type of phorophyte was crucial for the differences in the species composition from the tree base to the upper crown that was observed. The highest richness of bryophytes was recorded on the tree bases, while the lowest was recorded in the upper parts of the crowns. The variability of the habitat conditions in the vertical gradient on the trunk that affected the patterns of the occurrence of species with different ecological preferences was determined using the Ellenberg indicator values. -
Volume 1, Chapter 2-7: Bryophyta
Glime, J. M. 2017. Bryophyta – Bryopsida. Chapt. 2-7. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-7-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 10 January 2019 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-7 BRYOPHYTA – BRYOPSIDA TABLE OF CONTENTS Bryopsida Definition........................................................................................................................................... 2-7-2 Chromosome Numbers........................................................................................................................................ 2-7-3 Spore Production and Protonemata ..................................................................................................................... 2-7-3 Gametophyte Buds.............................................................................................................................................. 2-7-4 Gametophores ..................................................................................................................................................... 2-7-4 Location of Sex Organs....................................................................................................................................... 2-7-6 Sperm Dispersal .................................................................................................................................................. 2-7-7 Release of Sperm from the Antheridium..................................................................................................... -
Estimation of Plant Sampling Uncertainty: an Example Based on Chemical Analysis of Moss Samples
Environ Sci Pollut Res DOI 10.1007/s11356-016-7477-4 RESEARCH ARTICLE Estimation of plant sampling uncertainty: an example based on chemical analysis of moss samples Sabina Dołęgowska1 Received: 18 April 2016 /Accepted: 15 August 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract In order to estimate the level of uncertainty arising Keywords Pleurozium schreberi (Brid.) Mitt . Trace from sampling, 54 samples (primary and duplicate) of the elements . Sampling uncertainty . Statistical methods moss species Pleurozium schreberi (Brid.) Mitt. were collect- ed within three forested areas (Wierna Rzeka, Piaski, Posłowice Range) in the Holy Cross Mountains (south-central Introduction Poland). During the fieldwork, each primary sample com- posed of 8 to 10 increments (subsamples) was taken over an Since the 1960s, monitoring studies using living organisms has area of 10 m2 whereas duplicate samples were collected in the been one of the most popular methods used to measure re- same way at a distance of 1–2 m. Subsequently, all samples sponse of individual organism to pollutants and to assess the were triple rinsed with deionized water, dried, milled, and environmental quality (Čeburnis and Steinnes 2000;Gerhardt digested (8 mL HNO3 (1:1) + 1 mL 30 % H2O2) in a closed 2002; Wolterbeek 2002; Szczepaniak and Biziuk 2003; Burger microwave system Multiwave 3000. The prepared solutions 2006; Samecka-Cymerman et al. 2006; Zechmeister et al. were analyzed twice for Cu, Fe, Mn, and Zn using FAAS and 2006). Among the wide and spread group of organisms, some GFAAS techniques. All datasets were checked for normality moss species, e.g., Pleurozium schreberi, Hylocomium and for normally distributed elements (Cu from Piaski, Zn splendens, Hypnum cupressiforme,andPseudoscleropodium from Posłowice, Fe, Zn from Wierna Rzeka). -
Flora Mediterranea 26
FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M. -
Bangor University DOCTOR of PHILOSOPHY Biosystematic and Cytological Studies of Mosses and Liverworts. Abderrahman, Salim Moh'd
Bangor University DOCTOR OF PHILOSOPHY Biosystematic and cytological studies of mosses and liverworts. Abderrahman, Salim Moh'd Mansur Award date: 1981 Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 In the name of GOD Most Gracious Most Merciful -ii iä -0 Thanking Him with a full heart and devoted tongue ST COPY AVAILA L TEXT IN ORIGINAL IS CLOSETO THE EDGE OF THE PAGE BIOSYSTE14ATIC'AND'CYTOLOGICAL', STUDIES'OF 'MOSSES'AND 'LIVERWORTS A thesis Presented for the &gree pf- PhiloSophiae Doctor in the University of Wales by Salim Moh'd Mansur Abderrahmano B. Sc. Biology & Ed. Cý (Kuwait University) School of Plant Biology, University College of North Wales, Bangor M. K. ), I hereby declare that the work herein, now submitted as a thesis for the degree of Philosophiae Doctor of the University of Wales, is the result of my own investigations and that all references to ideas and work of other resefrchers has been specifically acknoFledged. -
Axenically Culturing the Bryophytes: Establishment and Propagation of the Moss Hypnum Cupressiforme Hedw. (Bryophyta, Hypnaceae) in in Vitro Conditions
35 (1): (2011) 71-77 Original Scientifi c Paper Axenically culturing the bryophytes: establishment and propagation of the moss Hypnum cupressiforme Hedw. (Bryophyta, Hypnaceae) in in vitro conditions Milorad Vujičić✳, Aneta Sabovljević and Marko Sabovljević Institute of Botany and Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia ABSTRACT: Th e study gives the fi rst report of in vitro culture of the pleurocarpous moss Hypnum cupressiforme and on the problems of axenicaly culturing this bryophyte and the conditions for establishment and propagation. Problems of surface sterilization are elaborated regarding sporophyte vs. gametophyte. Th e infl uence of nutrient, light length and temperature on diff erent developmental stages is discussed. Th e best conditions for micro-propagation from shoots are slightly lower temperature (18-20°C), on MS-sugar free medium irrelevant of day length. Th is moss is a counterpart of some rare and endangered mosses from the same genus and data presented should be taken into account of conservation and propagation of its counterparts as well. Its propagation is valuable for horticultural, pharmaceutical and bioindication purposes, as well. Key words: moss, Hypnum cupressiforme, in vitro, development, propagation Received 29 October 2010 Revision accepted 27 December 2010 UDK 582.325.23:575.2.085.2 INTRODUCTION establishment in axenic culture, it is oft en problem of material availability, genetic variability of material, disposal Bryophytes (comprising hornworts, liverworts and of axenic organisms leaving on bryophytes and low level mosses) are the second largest group of higher plants aft er of species biology knowledge (e.g. Duckett et al. -
Household and Personal Uses
Glime, J. M. 2017. Household and Personal Uses. Chapt. 1-1. In: Glime, J. M. Bryophyte Ecology. Volume 5. Uses. Ebook sponsored 1-1-1 by Michigan Technological University and the International Association of Bryologists. Last updated 5 October 2017 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 1 HOUSEHOLD AND PERSONAL USES TABLE OF CONTENTS Household Uses...................................................................................................................................................1-1-2 Furnishings...................................................................................................................................................1-1-4 Padding and Absorption...............................................................................................................................1-1-5 Mattresses.............................................................................................................................................1-1-6 Shower Mat...........................................................................................................................................1-1-7 Urinal Absorption.................................................................................................................................1-1-8 Cleaning.......................................................................................................................................................1-1-8 Brushes and Brooms.............................................................................................................................1-1-8 -
AMBRA1 Controls Plant Development and Senescence in Physcomitrella Patens
Presentation type: Oral Presentation, Poster Presentation (underline the preferred type) AMBRA1 controls plant development and senescence in Physcomitrella patens. Alessandro Alboresi1, Jessica Ceccato1, Tomas Morosinotto1, Luisa Dalla Valle1. The first one should be the presenting/corresponding author (underlined) 1Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58/B, 35121, Padova ([email protected]; [email protected]; [email protected]) Autophagy is a universal mechanism that in plants control development, resistance to stresses and starvation. The role of autophagy is possible thanks to the programmed degradation of cell material that is delivered to the vacuole where hydrolases and proteases are localized. So far, many autophagy-related proteins (ATGs) have been identified. Some of them are universal, some are either specific to animals, plants or yeast. ATG protein complexes govern autophagosome initiation, nucleation, expansion, and maturation. In particular, the regulation of nucleation by the ATG6 (Beclin-1 in mammals) complex has not been well defined in plants. Here we described the study of the Activating Molecule in Beclin 1-Regulated Autophagy (AMBRA1) protein, recently identified in mice and then characterized in our department in zebrafish and in the non-vertebrate chordate Botryllus schlosseri. In animals AMBRA1 is a positive regulator of autophagy that binds Beclin-1 upon autophagic stimuli. AMBRA1 is a large intrinsically disordered protein, able to bind other regulatory partners involved in cell processes such as autophagy, apoptosis, cell proliferation, development and cancer. AMBRA1 sequence was found in plant genomes and we are studying its function in Physcomitrella patens where two lowly expressed genes are present, AMBRA1a and AMBRA1b. -
Liverworts Mosses
LIVERWORTS LIVERWORTS MOSSES Heller’s Notchwort (Anastrophyllum hellerianum) Hatcher’s Paw-wort (Barbilophozia hatcheri) Key features for identifying Key features for identifying liverworts Mosses Growth form. There are two sorts of liverworts; leafy Growth form. Leaving aside the very distinctive bog- liverworts have a stem and leaves and resemble a mosses (Sphagnum), mosses can be split into two moss, whereas thallose or thalloid liverworts have a groups, acrocarpous and pleurocarpous. There is a simple strap of tissue with no stem or leaves. Leafy technical difference between these two forms but in liverworts can form erect cushions and turfs while some practical terms, acrocarps usually have erect stems are creeping and closely apressed to rock or tree. The and grow in cushions or turfs while pleurocarps tend size of the plant is also important; a number of oceanic Michael Lüth to grow with main stems parallel to the ground (or rock Leafy liverwort NS; size: very small and forming thin patches Leafy liverwort; size: small to medium-sized forming tight liverworts are very, very small. Above - Left: acrocarpous Scott’s Fork moss (Dicranum Above - Left: a thallose liverwort, Overleaf Pellia (Pellia or tree trunk) and form wefts. The often dense growth of upright stems; colour: yellow or yellow green with shoot patches of erect stems; colour: mid or yellow green, often with Leaf shape. This is all-important in leafy liverworts and scottianum) ; right: pleurocarpous Larger Mouse-tail epiphylla) with fruits; right: a leafy liverwort with round form of acrocarps means that their sparse branches tips red with gemmae; leaves: tiny with two lobes but hardly some shoot tips red with gemmae; leaves: rounded-rectangular leaves, Autumn Flapwort (Jamesoniella autumnalis). -
Liverworts, Mosses and Hornworts of Afghanistan - Our Present Knowledge
ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019 DOI: 10.2478/cszma-2019-0002 Published: online 1 July 2019, print July 2019 Liverworts, mosses and hornworts of Afghanistan - our present knowledge Harald Kürschner & Wolfgang Frey Liverworts, mosses and hornworts of Afghanistan ‒ our present knowledge. – Acta Mus. Siles. Sci. Natur., 68: 11-24, 2019. Abstract: A new bryophyte checklist for Afghanistan is presented, including all published records since the beginning of collection activities in 1839 ‒1840 by W. Griffith till present. Considering several unidentified collections in various herbaria, 23 new records for Afghanistan together with the collection data can be added to the flora. Beside a new genus, Asterella , the new records include Amblystegium serpens var. serpens, Brachythecium erythrorrhizon, Bryum dichotomum, B. elwendicum, B. pallens, B. weigelii, Dichodontium palustre, Didymodon luridus, D. tectorum, Distichium inclinatum, Entosthodon muhlenbergii, Hygroamblystegium fluviatile subsp. fluviatile, Oncophorus virens, Orthotrichum rupestre var. sturmii, Pogonatum urnigerum, Pseudocrossidium revolutum, Pterygoneurum ovatum, Schistidium rivulare, Syntrichia handelii, Tortella inflexa, T. tortuosa, and Tortula muralis subsp. obtusifolia . Therewith the number of species increase to 24 liverworts, 246 mosses and one hornwort. In addition, a historical overview of the country's exploration and a full biogeography of Afghan bryophytes is given. Key words: Bryophytes, checklist, flora, phytodiversity. Introduction Recording, documentation, identification and classification of organisms is a primary tool and essential step in plant sciences and ecology to obtain detailed knowledge on the flora of a country. In many countries, such as Afghanistan, however, our knowledge on plant diversity, function, interactions of species and number of species in ecosystems is very limited and far from being complete. -
Field Guide to the Moss Genera in New Jersey by Keith Bowman
Field Guide to the Moss Genera in New Jersey With Coefficient of Conservation and Indicator Status Keith Bowman, PhD 10/20/2017 Acknowledgements There are many individuals that have been essential to this project. Dr. Eric Karlin compiled the initial annotated list of New Jersey moss taxa. Second, I would like to recognize the contributions of the many northeastern bryologists that aided in the development of the initial coefficient of conservation values included in this guide including Dr. Richard Andrus, Dr. Barbara Andreas, Dr. Terry O’Brien, Dr. Scott Schuette, and Dr. Sean Robinson. I would also like to acknowledge the valuable photographic contributions from Kathleen S. Walz, Dr. Robert Klips, and Dr. Michael Lüth. Funding for this project was provided by the United States Environmental Protection Agency, Region 2, State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809. Recommended Citation: Bowman, Keith. 2017. Field Guide to the Moss Genera in New Jersey With Coefficient of Conservation and Indicator Status. New Jersey Department of Environmental Protection, New Jersey Forest Service, Office of Natural Lands Management, Trenton, NJ, 08625. Submitted to United States Environmental Protection Agency, Region 2, State Wetlands Protection Development Grant, Section 104(B)(3); CFDA No. 66.461, CD97225809. i Table of Contents Introduction .................................................................................................................................................. 1 Descriptions -
Bryophytes of North Carolina (2021-10-01) Nc-Biodiversity.Com [State Rank Global Rank] {State Status} Comments SCAPANIACEAE: [Cont.] 36 Diplophyllum Taxifolium
List of the Moss, Liverwort, Hornwort taxa of North Carolina (2021-10-01) This is a listing of the 692 taxa (692 native) that have been (documented to or which might) occur in the state [455 Mosses, 230 Liverworts, 7 Hornworts]. The scientific and common names used in this list are from: (Mosses ???), (Liverworts ???), and (Hornworts ???). The list also includes the State Rank, Global Rank, State Status, and U.S. Status (if it has such statuses) for each species. The ranks are those of the Biotics database of the North Carolina Natural Heritage Program and NatureServe, October 2016. The NC NHP provides the Significantly Rare and Watch List status categories. [State Rank Global Rank] {State Status} Comments ••• Hornworts ••• ANTHOCEROTACEAE: [2] 1 Anthoceros adscendens ....................................... ascending hornwort ..................... [S2?G3?] {W7} 2 Anthoceros lamellatus ........................................... walled hornwort ........................... [S1GNR] {SR-L} DENDROCEROTACEAE: [1] 3 Nothoceros aenigmaticus ..................................... mystery hornwort ......................... [S3G3] {W1} ••• Liverworts ••• CEPHALOZIACEAE: [2] 4 Fuscocephaloziopsis connivens var. bifida ........... split Cephalozia ........................... [S1G5T1Q] 5 Fuscocephaloziopsis pleniceps var. caroliniana ... Carolina Cephalozia .................... [SHG5T1] CEPHALOZIELLACEAE: [5] 6 Cephaloziella hampeana ...................................... Hampe's Cephaloziella ................ [S1G5] 7 Cephaloziella massalongoi ..................................