The Roots of a New Green Revolution

Total Page:16

File Type:pdf, Size:1020Kb

The Roots of a New Green Revolution Opinion The roots of a new green revolution Griet Den Herder1,4, Gert Van Isterdael2,3, Tom Beeckman2,3 and Ive De Smet2,3 1 Genetics, Faculty of Biology, University of Munich (LMU), D-82152 Martinsried-Mu¨ nchen, Germany 2 Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Gent, Belgium 3 Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium 4 Current address: Ablynx nv, Technologiepark 21, 9052 Gent, Belgium A significant increase in shoot biomass and seed yield food production has often been overlooked. Nevertheless, has always been the dream of plant biologists who wish the root system is taking care of indispensable plant func- to dedicate their fundamental research to the benefit of tions such as uptake of nutrients and water, anchorage in mankind; the first green revolution about half a century the substrate and interaction with symbiotic organisms. ago represented a crucial step towards contemporary Consequently, root system development is central for the agriculture and the development of high-yield varieties plant to reach optimal growth and is sure to contribute to of cereal grains. Although there has been a steady rise in the levels of yield obtained in crops. Lately the impact of our food production from then onwards, the currently the ‘hidden half’ on plant growth has become apparent not applied technology and the available crop plants will not only in Arabidopsis (Arabidopsis thaliana), but also in be sufficient to feed the rapidly growing world popula- crops like wheat (Triticum aestivum), rice (Oryza sativa), tion. In this opinion article, we highlight several below- maize (Zea mays) and legumes, such as soybean (Glycine ground characteristics of plants such as root architec- max), barrel medic (Medicago truncatula), and Lotus japo- ture, nutrient uptake and nitrogen fixation as promising nicus [6–12]. Moreover, recent simulations suggested that features enabling a very much needed new green revo- changes in root architecture can strongly affect yield, lution. which might be sufficient to explain maize yield trends in the USA Corn Belt [13]. This indicates that root growth Rise of the hidden half and development might represent an underestimated and In 1798 Thomas Robert Malthus predicted in his An Essay not fully exploited area for strategies to enhance yield. on the Principle of Population that sooner or later a con- tinuously growing world population will be confronted with What are the major challenges? famine, disease and widespread mortality [1]. About two Due to climate change, plant roots and their habitats have hundred years later, the world is facing the major chal- a high risk of becoming subjected to unfavorable conditions lenge of providing food security for an ever growing world such as water scarceness, increasing ground water salini- population, while the agricultural area is shrinking [2].In ty, decline in soil nutrients and build up of soil pests. In the middle of the previous century, a Green Revolution addition the available arable land is becoming more sparse allowed food production to keep pace with worldwide pop- and precious due to erosion of hill-sides, soil degradation, ulation growth [3]. The International Food Policy Research landslides and the increasing demand for biofuels. The Institute has launched the 2020 Vision Initiative with the contemporary yields obtained by the classical use of water, primary goal to reach sustainable food security for all by fertilizers and pesticides have reached a maximum. 2020 and to cut by 50% the number of chronically under- Attempts to further boost yield by using more fertilizers nourished people on the planet by the year 2015 (http:// and/or pesticides are not feasible, not only because of a www.ifpri.org/book-753/ourwork/program/2020-vision- higher risk for public health and environmental problems, food-agriculture-and-environment). These deadlines are but also because of negative effects on yield [14]. For the approaching quickly, and we are far from reaching either root system to live up to the expectations as an important of these goals. In the immediate future, plant research will contributor to improved yield, a number of challenges will again be central in finding alternative crops or methods to need to be tackled (see also Box 1). cope with the threatening food shortage. In addition, next First, the conversion of unsuitable soil to arable land to finding the ideal food–population balance, improving will require agricultural techniques such as the improve- plant yield will also be vital for exploiting plants further ment of soil conditions through alternative fertilization. as a renewable energy source. Unfortunately, plant growth For instance, legume crop rotations as green manure have and productivity are greatly affected by environmental contributed considerably to the improvement of soil quality stresses such as drought, high salinity, nutrient-deficiency [15]. Second, and more critical, those soils will require and adverse temperatures. Due to climate changes these crops which are able to deal with the awkward edaphic challenges are currently becoming even more intensified. and climate conditions. We will need to improve root In the past, improvement of crops and agricultural architecture, nutrient uptake efficiency, nutrient storage techniques has mainly focused on increasing shoot biomass and root-to-shoot transport. Furthermore, roots need to and seed yield [4,5], and the relevance of the root system for fight off pathogens, prevent loss of soil through erosion and be able to resist the increasingly occurring unfavorable Corresponding author: De Smet, I. ([email protected]). conditions such as salt and drought. The past decade 600 1360-1385/$ – see front matter ß 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tplants.2010.08.009 Trends in Plant Science, November 2010, Vol. 15, No. 11 Opinion Trends in Plant Science Vol.15 No.11 Box 1. Hardest questions and a roadmap for root biology Box 2. The value of root research in the model plant Arabidopsis To obtain the necessary adaptations to root system architecture and symbiotic interactions, a couple of hurdles need to be taken first. A major challenge of studying model organisms, such as Arabi- How to translate the knowledge from conditioned, agar-grown dopsis, is transferring the knowledge and new tools to crop species model plants to soil-grown roots? How to translate the knowledge [4]. However, investigating root development in Arabidopsis has the from a simple Arabidopsis or legume model root system to a advantage that crucial genes can be more easily identified using complex crop? Next to answering these questions, as attempted genome-wide tools and integrated approaches, and quickly tested, throughout the main text, a number of key things that are needed upon which their function can be analyzed in crop species. For are: example, through a focused, cell-specific transcript profiling of early A better understanding of root development and its interaction lateral root initiation we recently identified a ligand-receptor-like with the biotic and abiotic factors, as well as with the symbiotic kinase pathway centered around ACR4 that controls aspects of root organisms in the rhizosphere. branching in Arabidopsis [93]; and it will be interesting to analyze More detailed analyses of the impact of root development on the role in root development of the maize ortholog CR4, the plant fitness, and consequently on the communication between founding member of this subset of receptor-like kinases [94]. root and shoot. However, because cereals display a more complex root branching Integration of all aspects of root biology in the simple models that than Arabidopsis [8] it is clear that direct studies in maize, rice, exist for root meristem functioning and branching [87–91], and to barley (Hordeum vulgare subsp. vulgare L.), or the new cereal create models that implement the influence of root environmental model purple false brome (Brachypodium distachyon) play an conditions, such as nutritional sources and soil organism equally important role [95–98]. These and other species already associations [92]. revealed key regulators of (lateral) root development, before they were described in Arabidopsis [96,99–101]. In addition, Arabidopsis does not engage any root symbiosis, and therefore, these aspects provided an enormous leap forward with respect to our need to be addressed in model legume systems. Furthermore, more understanding of the physiological and molecular aspects research opportunities directly in the species of interest are arising, due to the increasing amount of knowledge and availability of of root development and branching in Arabidopsis [16] and genomic tools in crops, as well as the new sequencing technologies crops like maize and rice [6,8], as well as of root interac- which allow us to (re)sequence whole genomes and identify trait tions with pathogenic or beneficial organisms [17–19]. mutations in a straightforward manner in the crops itself. Never- Nevertheless, we are only at the verge of understanding theless, Arabidopsis will remain an excellent model system to study this complex process in its entirety. The remaining gaps in the basic elements of root architecture and adaptation to the environment, because of the vast knowledge on the developmental, our knowledge impede a speedy translation to agricultural physiological, and genomic level, and simplicity of the root system. applications and need to be filled by well thought-through
Recommended publications
  • Dakota Olson Hometown
    Evaluating the Effect of Management Practices on Soil Moisture, Aggregation and Crop Development By: Dakota Olson Hometown: Keswick, IA The World Food Prize Foundation 2014 Borlaug-Ruan International Internship Research Center: International Maize and Wheat Improvement Center (CIMMYT) Location: El Batan, Mexico P a g e | 2 Table of Contents Acknowledgements……………………………………………………………………………..3 Background Information………………………………………………………………………..4 CIMMYT Research Institute The Dr. Borlaug Legacy (in relation to CIMMYT) Discuss the long-term project of CIMMYT (1999-2014) Introduction………………………………………………………………………………………5 Introduction to Field Management Practices Objectives Conservation Agriculture Program Procedures and Methodology………………………………………………………………….6 The Field Plot Technical Skills o Yield Calculations o Time to Pond Measurements o Calculating Volumetric Water Content Results……………………………………………………………………………………………8 Objective 1: Effect of Tillage Method and Crop Residue on Soil Moisture Objective 2: Effect of Tillage Method and Crop Residue on Crop Yield Objective 3: Relationship between Time to Pond and Crop Yield Analysis of Results…………………………………………………………………………….11 Discussion, Conclusion, and Recommendations…………………………………………..15 Personal Experiences…………………………………………………………………………17 Pictures…………………………………………………………………………………………20 References and Citations…………………………………………………………………….21 P a g e | 3 Preface and Acknowledgements My success at the International Maize and Wheat Improvement Center (CIMMYT) would not be possible without the multitude of supporters that allowed me to pursue this incredible opportunity. A massive thank-you to the World Food Prize Organization and the staff and supporters that supply hundreds of youth and adults across the world with empowerment and opportunities to play as a stake-holder in international development issues. A big thank- you to Lisa Fleming of the World Food Prize Foundation for playing an integral role in the success of my international internship while in Mexico.
    [Show full text]
  • A Pathway to Inclusive Sustainable Intensification in Agriculture? Assessing Evidence on the Application of Agroecology in Tanzania
    This is a repository copy of A pathway to inclusive sustainable intensification in agriculture? Assessing evidence on the application of agroecology in Tanzania. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/132770/ Version: Accepted Version Article: Mdee, A orcid.org/0000-0002-8260-1840, Wostry, A, Coulson, A et al. (1 more author) (2019) A pathway to inclusive sustainable intensification in agriculture? Assessing evidence on the application of agroecology in Tanzania. Agroecology and Sustainable Food Systems, 43 (2). pp. 201-227. ISSN 2168-3565 https://doi.org/10.1080/21683565.2018.1485126 © 2018 Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in Agroecology and Sustainable Food Systems on 20 Jun 2018, available online: http://www.tandfonline.com/10.1080/21683565.2018.1485126. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and
    [Show full text]
  • Second Green Revolution-1
    SECOND GREEN REVOLUTION for SUSTAINABLE LIVELIHOOD OF SMALL FARMERS Concept Paper BAIF DEVELOPMENT RESEARCH FOUNDATION Dr. Manibhai Desai Nagar, Warje, Pune 411 058, India Phone: 020-25231661 Fax: 020-25231662 E-mail: [email protected] Website: www.baif.org.in Development for Sustainable Rural Livelihood The advancement in space and nuclear technologies will soon take India to the group of developed nations. India has already established its leadership in information technology and heavy engineering. The challenge now is to sustain the growth and ensure economic prosperity, particularly in rural areas. Rural development in India requires priority because more than 65% of the population are still living in villages and over 85% of the rural people are dependent on agriculture for their livelihood. More than 75% being small and marginal holders, most of their earnings are utilised to ensure food security. With the growing population and over-exploitation of natural resources, the pressure on food security and employment generation will continue to mount, further affecting the quality of rural life. Hence, it is necessary to develop a suitable strategy to improve the economy of the rural sector through agricultural development and sustainable use of natural resources. To achieve rural prosperity, the development strategy should focus on improved agricultural production while generating gainful self-employment for small farmers and weaker sections of the society. With year-round employment, the poor can earn enough to meet their basic needs. Agriculture is the main source of rural employment, but being deprived of irrigation facilities, a majority of the small and marginal farmers are heavily under-employed for 6-8 months in a year.
    [Show full text]
  • Challenges Facing a Second Green Revolution—Expanding the Reach of Organic Agriculture Presentation at USDA Workshop on Organic Agriculture
    Challenges Facing a Second Green Revolution—Expanding the Reach of Organic Agriculture Presentation at USDA Workshop on Organic Agriculture October 6-7, 2005 Washington, D.C. Thomas L. Dobbs South Dakota State University The first Green Revolution • The word “revolution” has been greatly abused, but no other term adequately describes the effects of the new seeds on the poor countries where they are being used. The technological breakthrough achieved by agricultural scientists foreshadows widespread changes in the economic, social, and political orders of the poor countries. [Lester Brown (1970, p. 6), describing the “Green Revolution” in developing countries, in his book Seeds of Change: The Green Revolution and Development in the 1970’s] A second Green Revolution based on organic systems? • The future for organic farming is uncertain. Much depends on the availability and price of fertilizer (especially nitrogen) and farm labor, produce-price relationships, the domestic and world demand for food, concern for soil and water conservation, concern for health and the environment, and U.S. policies toward the development and promotion of organic farming practices. Due to one or more of the above factors, it may be economical for some farmers to produce certain crops and livestock organically rather than conventionally. [From the USDA’s classic Report and Recommendations on Organic Farming (USDA Study Team on Organic Farming, 1980, p. 46)] ‘Influences’ emphasized by analysts of both the ‘first’ and ‘second’ Green Revolutions • Technology, prices, and markets • The structure of agriculture • Public policies Technology, prices, and markets • US organic consumption expanding 20% annually. • Organic food sales 2% of US food sales by 2003.
    [Show full text]
  • Genetic Improvements in Agriculture
    Genetic Improvements in Agriculture From Hunter Gatherer to Green Revolution and Beyond www.plantcell.org/cgi/doi/10.1105/tpc.111.tt0511 •Life on earth is about four billion years old •Homo sapiens emerged as a species about 300,000 years ago Cro magnon skull Homo sapiens ~ 30,000 years old Image credit: Smithsonian Institution Human Origins Program •Human activities have caused vast changes in the physical, chemical, geological, atmospheric and biological realm of our Cro magnon skull planet Homo sapiens ~ 30,000 years old Image credit: Smithsonian Institution Human Origins Program We’ve removed mountains 1984 2009 2 km The Hobet coal mine in Boone County, West Virginia spreads over 10,000 acres (15.6 square miles) NASA images by Robert Simmon, based on Landsat 5 data from the USGS Global Visualization Viewer. ...dammed rivers... 1987 2006 Three Gorges Dam, the world's largest hydroelectric power + View movie of the dam's generator. The reservoir just construction upstream of the dam is more than 2 miles (3 km) across Photo credit: NASA/Goddard Space Flight Center Scientific Visualization Studio United States Geological Survey and Le Grand Portage ....caused extinctions..... The dodo (Raphus cucullatus) was a large flightless bird indigenous to Mauritius. The arrival of humans led to the dodo’s extinction by the end of the 17th century. Dodo by Edouard Poppig, 1841 ...modified other species in extraordinary ways ? ... and modified plant genomes for thousands of years...... Image credits: P. Cos, Cacaphony, USDA, CIMMYT Now we face our
    [Show full text]
  • A Review ∗ Dian T
    Global Food Security 22 (2019) 13–24 Contents lists available at ScienceDirect Global Food Security journal homepage: www.elsevier.com/locate/gfs The second green revolution: Innovative urban agriculture's contribution to T food security and sustainability – A review ∗ Dian T. Armandaa,b, , Jeroen B. Guinéea, Arnold Tukkera,c a Department of Industrial Ecology, Institute of Environmental Sciences (CML), Leiden University, Van Steenisgebouw, Einsteinweg 2, 2333, CC Leiden, the Netherlands b Department of Biology, Faculty of Science and Technology, Walisongo State Islamic University, Jl. Prof. Dr. Hamka, Ngaliyan, Semarang, Indonesia c Netherlands Organisation for Applied Scientific Research, Anna van Buerenplein 1, 2595, DA Den Haag, the Netherlands ARTICLE INFO ABSTRACT Keywords: Since 2010, advances in scientific knowledge and innovative agricultural technology have revitalized urban Innovation agriculture (UA) into innovative urban agriculture (IUA). The continuous intensification of IUA could lead toa Urban agriculture Second Green Revolution, which aims to meet the current and future food demand. Here, we review the Sustainability emerging IUA practices and estimate the contribution of IUA to food security and environmental sustainability Environment by limitedly comparing scientific literature and actual data of eighteen practitioners worldwide. The currently Food security most productive IUA practice can produce up to 140 kg vegetables per m2/year. Various scales of IUA potentially Aeroponic Aquaponic contribute to global food security by supporting local food supply, strengthening the food value chain, and Hydroponic applying more sustainable practices than conventional agriculture. Further comprehensive life cycle assessments of IUA are needed, especially in developing countries, to prevent an increase of the environmental burden and to balance the interests of people, planet, and profit.
    [Show full text]
  • A Second Green Revolution | the Economist
    5/10/2014 How better rice could save lives: A second green revolution | The Economist How better rice could save lives A second green revolution Technological breakthroughs in rice will boost harvests and cut poverty. They deserve support May 10th 2014 | From the print edition WHEN, in 1961, the government of India asked a celebrated wheat breeder, Norman Borlaug, for advice about new seeds, the subcontinent was thought to be on the verge of starvation. China actually was suffering from famine. Borlaug persuaded India to plant a new semi- dwarf variety of wheat in Punjab. The next year, the country also tried out a dwarf variety of rice called IR8. These short-stemmed crops solved a basic problem: old-fashioned crops were long and leggy, so when fed with fertiliser they grew too tall and fell over. Borlaug’s varieties put out more, heavier seeds instead. They caught on like smartphones. Over the next 40 years the green revolution spread round the world, helping ensure that, where its seeds were planted, famines became things of the past. Now a second green revolution is stirring in the fields of Asia. It will not be the same as the first one, since it will depend not on a few miracle varieties but on tailoring existing seeds to different environments. But it promises to bring similar benefits—this time to the poor lands and poorer farmers that the first version passed by (see article (http://www.economist.com/news/briefing/21601815-another-green-revolution-stirring-worlds- paddy-fields-bigger-rice-bowl) ). Such lands are poor because they are prone to floods, drought http://www.economist.com/node/21601850/print 1/3 5/10/2014 How better rice could save lives: A second green revolution | The Economist and salinity.
    [Show full text]
  • Education in East Africa: Reviving the Green Revolution
    Anna Johnson, Student Participant Iowa City High School Iowa City, IA Education in East Africa: Reviving the Green Revolution In order to understand how to replicate the Green Revolution, it is important to first examine the original Revolution. In the mid-1960s, Norman Borlaug and a team of scientists began developing a breed of dwarf wheat that would be resistant to many kinds of plant pests and diseases. The wheat was also two to three times more productive than normal varieties of wheat at the time. Borlaug introduced this species into India and Pakistan, which were on the verge of famine. In only one decade, wheat production had quadrupled. Today wheat production is tenfold what it was when Borlaug began his work. By 1974 India was self-sufficient in the production of cereals. Pakistan transformed its wheat production; from 3.4 million tons of wheat per year when Borlaug started to 18 million tons today. Borlaug went on to develop a high-yield rice. This rice was introduced throughout Asia and gave birth to the Green Revolution. The success of the Green Revolution is due in large part to Borlaug’s approach to introducing new crops. The first step is to develop the technology. The second step is to deploy the technology and the third step is to encourage farmers, businesses and government organizations to use the technology on a large scale. Each step should include working with and educating local farmers. In order for the introduction of new crops to be successful, it is imperative that local farmers be involved in the decisions and planning of every step.
    [Show full text]
  • Feeding the World: How Changes in Biotech Regulation Can Jump-Start the Second Green Revolution and Diversify the Agricultural Industry
    William & Mary Environmental Law and Policy Review Volume 44 (2019-2020) Issue 2 Article 2 February 2020 Feeding the World: How Changes in Biotech Regulation Can Jump-Start the Second Green Revolution and Diversify the Agricultural Industry John A. Erwin Robert Glennon Follow this and additional works at: https://scholarship.law.wm.edu/wmelpr Part of the Administrative Law Commons, Agriculture Law Commons, and the Environmental Law Commons Repository Citation John A. Erwin and Robert Glennon, Feeding the World: How Changes in Biotech Regulation Can Jump-Start the Second Green Revolution and Diversify the Agricultural Industry, 44 Wm. & Mary Envtl. L. & Pol'y Rev. 327 (2020), https://scholarship.law.wm.edu/wmelpr/vol44/iss2/2 Copyright c 2020 by the authors. This article is brought to you by the William & Mary Law School Scholarship Repository. https://scholarship.law.wm.edu/wmelpr FEEDING THE WORLD: HOW CHANGES IN BIOTECH REGULATION CAN JUMP-START THE SECOND GREEN REVOLUTION AND DIVERSIFY THE AGRICULTURAL INDUSTRY JOHN A. ERWIN* & ROBERT GLENNON** As the Earth’s population climbs from 7.7 billion in 2019 to almost 10 billion by mid-century, farmers will need to increase food production by 70 percent. This Article analyzes the tools available to achieve this demanding goal. We assess changes in agriculture related to both the organic industry and the high-tech sector that are enabling farmers to be- come more efficient. Critically, biotechnology offers great promise to hasten the pace of increased agricultural efficiency through genetic engineering. While genetic modification has been controversial, we cannot exclude any viable policy option, especially one with so much promise.
    [Show full text]
  • In His 1968 Bestseller the Population Bomb
    Will Rooney, Student Participant A & M Consolidated High School College Station, Texas Fighting Hunger Using Previously Learned Lessons in East Africa and Ethiopia In his 1968 bestseller The Population Bomb, biologist Paul Ehrlich wrote that “The battle to feed all of humanity is over” and he predicted massive famines in most of the less developed world (Bailey 1). He claimed that “billions would perish” and that these global famines could not be stopped by any means (Bailey 1). The situation in most of the countries which he was talking about was severe and over fifty percent of the world’s population experienced some sort of food insecurity each year at that time (Bailey 1). In addition to Ehrlich, many other scientists also believed that the world could not continue to support increasing population. Luckily, he was proved wrong by a massive effort on the part of Norman Borlaug and the countless thousands of scientists and agronomists across the world who participated in the aptly named “Green Revolution”. Started in the 1940s, it grew to encompass most of Asia, India, the Middle East and many parts of Latin America, making many of these countries self sufficient in cereal grain production (Hesser 68). Most countries, most notably India and China, did not endure the massive famines which were predicted; and many of these same countries are now food secure. The effect of the green revolution was significant; it doubled or tripled yields of most or all crops and it is credited with saving over a billion people thorough its effects (Bailey 1).
    [Show full text]
  • Lessons from the Green Revolution
    Lessons from the Green Revolution Peter Rosset March/April 2000 Do We Need New Technology to End Hunger? Faced with an estimated 786 million hungry people in the world, cheerleaders for our social order have an easy solution: we will grow more food through the magic of chemicals and genetic engineering. For those who remember the original "Green Revolution" promise to end hunger through miracle seeds, this call for "Green Revolution II" should ring hollow. Yet Monsanto, Novartis, AgrEvo, DuPont, and other chemical companies who are reinventing themselves as biotechnology companies, together with the World Bank and other international agencies, would have the world's anti-hunger energies aimed down the path of more agrochemicals and genetically modified crops. This second Green Revolution, they tell us, will save the world from hunger and starvation if we just allow these various companies, spurred by the free market, to do their magic. The Green Revolution myth goes like this: the miracle seeds of the Green Revolution increase grain yields and therefore are a key to ending world hunger. Higher yields mean more income for poor farmers, helping them to climb out of poverty, and more food means less hunger. Dealing with the root causes of poverty that contribute to hunger takes a very long time and people are starving now. So we must do what we can-increase production. The Green Revolution buys the time Third World countries desperately need to deal with the underlying social causes of poverty and to cut birth rates. In any case, outsiders-like the scientists and policy advisers behind the Green Revolution-can't tell a poor country to reform its economic and political system, but they can contribute invaluable expertise in food production.
    [Show full text]
  • Research Panorama on the Second Green Revolution in the World and Colombia
    DOI: http:/dx.doi.org/10.18180/tecciencia.2013.15.6 Research Panorama on the Second Green Revolution in the World and Colombia Panorama investigativo sobre la segunda revolución verde en el mundo y en Colombia Ángela Alba1, Ángela Burgos2, Jorge Cárdenas3, Katherine Lara4, Adriana Sierra5, Grace Andrea Montoya Rojas6 1Universidad Jorge Tadeo Lozano. Bogotá, Colombia, [email protected] 2Universidad Jorge Tadeo Lozano, Bogotá, Colombia, [email protected] 3Universidad Jorge Tadeo Lozano, Bogotá, Colombia, [email protected] 4Universidad Jorge Tadeo Lozano. Bogotá. Colombia, [email protected] 5Universidad Jorge Tadeo Lozano, Bogotá, Colombia, [email protected] 6Universidad Escuela Colombiana de Carreras Industriales, Bogotá, Colombia. [email protected] Received: 28 Oct 2013 Accepted: 05 Nov 2013 Published: 30 Dec 2013 Abstract The second Green Revolution is understood as the development of transgenic varieties, using tools such as genetic engineering and molecular biology applied to the DNA molecule. The product of the second Green Revolution corresponds to genetically modified organisms (GMOs) developed from inter-species cross manipulation and genetic information of some species of interest. The second Green Revolution was established as a strategy to help ensure food security, an increasingly growing population, and demanding of resources, to optimize crop productivity improving or introducing specific characteristics such as resistance to insects and herbicide tolerance to allow GMOs to be more tolerant of natural aggression. The debate on this revolution is maintained, sharpening and raising many interests due to its transversal aspects and impact on social, scientific, economic, political, and ecological issues. This paper aims to review the history, development, and applications of the second Green Revolution framed within the advantages and disadvantages of the environmental components that interact on the soil.
    [Show full text]