Tree Crown Measurement  5 Limb Length Nt  6 Canopy Mapping

Total Page:16

File Type:pdf, Size:1020Kb

Tree Crown Measurement  5 Limb Length Nt  6 Canopy Mapping eNTS: The Magazine of the Native Tree Society – Volume 3, Number 04, April 2013 Tree crown measurement 5 Limb Length http://en.wikipedia.org/wiki/Tree_crown_measureme nt 6 Canopy Mapping From Wikipedia, the free encyclopedia 7 References The crown of a tree consists of the mass of foliage Largest Recorded Crown Spreads and branches growing outward from the trunk of the tree. The average crown spread is the average Data on greatest crown spread is somewhat limited as horizontal width of the crown, taken from dripline to this parameter is not measured as frequently as are dripline as one moves around the crown. Some tree height and trunk girth. The largest recorded is the listings will also list the maximum crown spread "Monkira Monster" (Eucalyptus microtheca) located which represents the greatest width from dripline to at the Neuragully Waterhole in southwestern dripline across the crown.[1][2][3] Other crown Queensland, Australia which measured 239 feet in [8] measurements that are commonly taken include limb 1954. A Raintree (Samanea saman) in Venezuela length, crown volume, and foliage density. Canopy was measured to have a crown spread of 207 feet in [8] mapping surveys the position and size of all of the 1857. It reportedly is still living, but in poor health. [9] limbs down to a certain size in the crown of the tree A University of Connecticut site suggests that in and is commonly used when measuring the overall the wild they may have crown spreads up to 80 wood volume of a tree. meters. Robert Van Pelt measured a crown spread of 201 feet of a Kapok Tree (Ceiba pentandra) at Barro Average crown spread is one of the parameters Colorado Island, Panama in 2003.[8] commonly measured as part of various champion tree programs and documentation efforts. American Crown Spread Methodologies Forests, for example, uses a formula to calculate Big Cross-method. The average crown spread is the Tree Points as part of their Big Tree Program[3] that average of the lengths of longest spread from edge to awards a tree 1 point for each foot of height,[4] 1 point edge across the crown and the longest spread for each inch of girth,[5] and ¼ point for each foot of perpendicular to the first cross-section through the crown spread. The tree whose point total is the central mass of the crown.[1][2][3] Crown spread is highest for that species is crowned as the champion in taken independent of trunk position. Spread should their registry. The other parameter commonly be measured to the tips of the limbs, not to “notches” measured, in addition to the species and location in the crown shape, and at approximately right angles information, is wood volume.[6] A general outline of from each other. tree measurements is provided in the article Tree [7] Measurement with more detailed instructions in Average crown spread= (longest spread + longest taking these basic measurements is provided in “The cross-spread)/2 Tree Measuring Guidelines of the Eastern Native Tree Society” by Will Blozan.[1][2] The surveyor locates the point on the ground immediately below the branch tip on one end of the Contents measurements and marks that position. He then moves to opposite side of the crown and locates the 1 Largest Recorded Crown Spreads point under that branch tip. The spread along that line is the horizontal distance between those two 2 Crown Spread Methodologies positions. On steeply sloping ground (> 15 degrees) the taped distance between the two points can be 3 Crown Density corrected to a true horizontal by using basic 4 Crown Volume Estimates trigonometry. Horizontal distance = cos (inclination) x slope distance. The help of an assistant or the use of a laser rangefinder can greatly speed this process. 56 eNTS: The Magazine of the Native Tree Society – Volume 3, Number 04, April 2013 When using a laser rangefinder, as in measuring tree 2 (SUM/n) = Average crown spread height, several points on the far edge of the crown can be explored to find the furthest point. A laser This is the preferred method of canopy researchers rangefinder is also useful for measuring crown spread and is probably the most accurate, and can also be where one side of the crown is not easily accessible, used to quantify crown area. On large trees it can be [1] such as a tree growing on a cliff side or other barrier. accomplished quickly with a laser rangefinder. Measurements using a laser rangefinder if made at a Another instance where a laser rangefinder and steep angle greater need to be corrected for true clinometer are useful is if the canopy is high off the horizontal distance using the formula above. ground. For example, white pine typically has a long bare stem, with branching beginning far up the trunk. In these cases a series of shots taken to the outer reaches of the branches standing at the side of the trunk can be used to calculate the length of spokes. In this case the angles will be steep, and the length of a spoke will be: cos(inclination) x (laser measured distance) = spoke length Google Earth Measurements. With the increased availability of high resolution air photos available through Google Earth[10] crowns of individual trees can be distinguished providing another option for measuring crown spread.[11] The latitude and longitude of the tree can be read directly from Google Earth. Google Earth itself includes a ruler tool that can be used to measure diameters or spokes across the crown of the tree. Alternatively the crown area Tree crown spread measurement can be measured and crown spread calculated from that value. EasyAcreage V1.0 (demo version)[12] is a Spoke Method. When using the spoke method, four Google Earth area measurement tool that calculates or more measurements are taken from the outer the area of any shape outlined on the Google Earth dripline of the crown to the side edge of the trunk. display. Outline the edge of the trees canopy, The distance to the side edge of the trunk is for all following the branches and hollows around the practical purposes equal in length to the distance to canopy perimeter, including any enclosed hollows the center of the trunk. If the measurement from the within the canopy outline and read the area provided dripline of the crown to the side edge of the trunk is by Easy Acreage. Average crown spread can be not level, then the measured length must be converted determined with a simple formula: to a horizontal distance. Spoke length = cos(inclination) x (measured distance) If the slope Crown Spread = 2(area/π)½ angle is less than 10 degrees the difference between the horizontal distance and the measured length will Here we see that area is the area of an equivalent be less than 1.5% for slope distances less than 100 circle. For critical measurements, it is advisable to feet. These individual spoke lengths are averaged and check the measurement made through a remote this average is equal to half the average crown sensing application in person. spread. The more spokes measured in the process, the more accurate the characterization of the average Leverett[13][14] has also provided four options for crown spread. measuring the crown area through compass and clinometer surveys around the outer edge of the 57 eNTS: The Magazine of the Native Tree Society – Volume 3, Number 04, April 2013 crown or through a combination of measurements the maximum width of the crown along any axis from from the edge of the crown and to the trunk, and the dripline on one side of the tree to the dripline on those around the crown perimeter. All four the opposite side of the tree. circumscribe the crown area's drip-line with a polygon and divide the polygon into a series of Crown Density adjacent triangles, measure the area of each triangle The USDA Forest Service, has published a guidance and sum them. One option, the Polygonal Method, document[15] on field evaluations of a variety of measures each side of a triangle to compute its area. crown characteristics beyond that of the normally The second and third methods uses azimuths and one taken basic measurements. Included are a series of distance to the trunk calculate the area. The fourth definitions of terms, crown shape, crown method, the Azimuth Method, requires only azimuths density/foliage transparency, un-compacted live and distance measurements from point to point crown ratio, vigor class, and various dieback around the crown perimeter. evaluations. Polygonal Method. The measurer walks the perimeter Crown density is the amount of crown branches, of the crown following the drip line fairly closely. foliage and reproductive structures that blocks light Points are identified on the ground that represent the visibility through the crown. Each tree species has a outline of the crown and marked in a way so that the normal crown that varies with the site, genetics, tree next point is always visible from the prior one. For damage, etc. It also serves as an indicator of expected the first point, the distance to the center of the tree's growth in the near future. The crown density may be trunk is measured along with the vertical angle to the estimated using a Crown Density-Foliage point. Then the distance to the next exterior point is Transparency Card.[15][16] Using the card for reference measured along with the vertical angle. The measurer the observer estimates what percentage of the light is moves to that next exterior point and repeats the being blocked by the crown mass.
Recommended publications
  • Accuracy of Smartphone Applications in the Field Measurements of Tree Height
    Folia Forestalia Polonica, series A, 2015, Vol. 57 (4), 240–244 SHORT COMMUNICATION DOI: 10.1515/ffp-2015-0025 Accuracy of smartphone applications in the field measurements of tree height Szymon Bijak , Jakub Sarzyński Warsaw University of Sciences-SGGW, Department of Dendrometry and Forest Productivity, Nowoursynowska 159, 02-776 Warsaw, Poland, phone: +48 22 5938093, e-mail: [email protected] AbstrAct As tree height is one of the important variables measured in forestry, much effort is made to provide its fast, easy and accurate determination. We analysed precision of two widely available smartphone applications (Smart Measure and Measure Height) during the field measurements of tree height. The data was collected in three Scots pine stands in central Poland. We found negative systematic error of both tested applications regardless the distance of the measure- ment (15 or 20 m). RMSE values of the height estimates varied from 1.01 to 2.46 m depending on the application used and the distance of the measurement. Value of the calculated absolute and relative errors significantly (p < 0.015) positively depended on the actual height of the measured trees and was more diverse for higher trees. Smartphone applications seem to be promising measurement tool for tree height determination, however as for the time being they require improvement before wider introduction into the forest practice. Key words accuracy, tree height, smartphone, hypsometer, mobile applications IntroductIon Rapid development of the mobile techniques has in- troduced smartphones also into the forestry. Many ap- Tree height is one of the most often determined vari- plications that enable various types of measurements or ables in the forest inventory and in the quantitative calculations have appeared on the market (Hemery 2011, assessment of forest biomass, carbon stocks, growth, 2012).
    [Show full text]
  • The Use of Lidar Remote Sensing in Measuring Forest Carbon Stocks
    1 The Use of LiDAR Remote Sensing in Measuring Forest Carbon Stocks Michael Alan Salopek North Huntingdon, Pennsylvania Bachelor of Arts, University of Virginia, 2012 A Thesis presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Master of Arts Department of Environmental Sciences University of Virginia May, 2013 2 Table of Contents 1. Introduction 2. What is Lidar 2.1 Overview 2.2 What is Lidar 2.3 Lidar Terminology 2.4 Principles and Techniques 2.5 Overview of Applications 2.6 History 3. The Use of Lidar in Biomass Estimation 3.1 Systems 3.1.1 Space-born 3.1.2 Airborne 3.1.3 Terrestrial 3.2 Data Acquisition 3.2.1 First Return, Last Return 3.2.2 Multi Return 3.2.3 Full Wave Form 4. Methods and Models 4.1 Data Pre Processing 4.1.1 Filtering 4.1.2 Interpolation 4.1.3 DTM, DSM, CHM 4.1.4 Quality Assessment 4.2 Methods 4.2.1 Single Tree Detection, Tree Characteristic Detection 5. Examples of Studies in Estimating Carbon Stocks 6. Conclusion 3 Abstract Atmospheric carbon levels have increased dramatically since the industrial revolution, creating an increasing concern in forming a better understanding of the global carbon budget. A key part of this budget involves forest biomass and its ability to act as a source of carbon sink or carbon gain. It is understood that terrestrial areas serve as a large source of carbon sink in terms of the global carbon budget, however the degree of spatial variation, particularly with respect to densely vegetated areas, is less certain.
    [Show full text]
  • Designed to Enrich the Public School* Program If Instruction in Such Fields As
    DOCUMENT RESUME ED 028 862 88 RC 003 357 Feasibility Study of Resource-Use, Outdoor Education Center, Taylor County,Florida. Master Enterprises, Athens, Ga. Spons Agency-Office of Education (DHEW), Washington, D.C. Pub Date Dec 66 Note- 78p. EDRS Price MF -$0.50 HC-$4.00 Descriptors-Administrative Organization, Budgets, *Educational Facilities, *FeasibilityStudies, Federal Aid, *Outdoor Education, Program Descriptions, Program Evaluation, *Program Planning,Resource Allocations, Site Analysis, SoCioeconomic Background, *Supplementary Educational Centers Identifiers-*Florida Extensive planning in relation to the establishment of an outdooreducation center in the State of Florida is reported.The proposed outdoor education center. designed to enrich the public school* program ifinstructionin such fields as conservation, recreation, and resource-use, isoutlined. The report contains an account of socioeconomic conditions, a detailed descriptionof the site. !program descriptions, organization and administration information, a descriptionof facilities, an illustrated site plan. a complete setof construction and operating budgets for 3 years of operation, and a philosophyof evaluation. The appendix includes a report on the history of middle Florida, a basic bibliography of teachingmaterials, a list of schools eligible to participate in the project, and a list of organizations and. agencies which could provide assistance to the project. This publication is funded byTitle III of the Elementary and Secondary Education Act of 1965. (SW) Resource Use Outdoor Education Center Taylor County, Fiori Feasibility Study of Resource-Use Outdoor Education Center Taylor County, Florida Prepared by Masters Enterprises, Athens, Georgia, December, 1966 U.S. DEPARTMENT OF HEALTH, EDUCATION it WELFARE OFFICE Of EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS a STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY.
    [Show full text]
  • Estimation of Individual Tree Metrics Using Structure-From-Motion Photogrammetry
    Estimation of Individual Tree Metrics using Structure-from-Motion Photogrammetry A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geography Jordan M. Miller Department of Geography University of Canterbury 2015 Abstract The deficiencies of traditional dendrometry mean improvements in methods of tree mensuration are necessary in order to obtain accurate tree metrics for applications such as resource appraisal, and biophysical and ecological modelling. This thesis tests the potential of SfM-MVS (Structure-from- Motion with Multi-View Stereo-photogrammetry) using the software package PhotoScan Professional, for accurately determining linear (2D) and volumetric (3D) tree metrics. SfM is a remote sensing technique, in which the 3D position of objects is calculated from a series of photographs, resulting in a 3D point cloud model. Unlike other photogrammetric techniques, SfM requires no control points or camera calibration. The MVS component of model reconstruction generates a mesh surface based on the structure of the SfM point cloud. The study was divided into two research components, for which two different groups of study trees were used: 1) 30 small, potted ‘nursery’ trees (mean height 2.98 m), for which exact measurements could be made and field settings could be modified, and; 2) 35 mature ‘landscape’ trees (mean height 8.6 m) located in parks and reserves in urban areas around the South Island, New Zealand, for which field settings could not be modified. The first component of research tested the ability of SfM-MVS to reconstruct spatially-accurate 3D models from which 2D (height, crown spread, crown depth, stem diameter) and 3D (volume) tree metrics could be estimated.
    [Show full text]
  • Common Stand Exam Field Guide V
    Southwest Idaho Common Stand Exam Field Guide Version 1.6 Field Season 2004 Table of Contents Section 1: Data Collection Procedures 2 Setting 4 Sample Design 10 Plot Data 13 Tree Data 18 Vegetation Composition 28 Ground Surface Cover 32 Down Woody Material 35 Appendices E Existing Vegetation Composition Types G Potential Vegetation Codes H List of Species J Fixed Radius Plot K Variable Radius Plot L Measuring Diameter M Point of Measurement for DBH and DRC N Radial and Height Growth O Measuring Age P Measuring Height Q Measuring Crowns R Damage Categories, Agents, Severity Ratings and Tree Parts S Down Woody 1 Section 1: Data Collection Procedures The following fields are "required" regardless of examination level. Setting Project Name Region Proclaimed Forest Number District Location Stand Number Date Exam Level Precision Protocol Design Selection Method Expansion Factor Selection Criteria Number Plot Plot Number Surface Plot Number Down Woody Plot Number Quick Plot – A quick plot exam may group trees by species, diameter, heights and/or damage classes on both large and small plots. These exams collect stand structual data in an efficient manner. Measurement tolerances are relaxed to allow for occular estimation of many parameters. Diameters of live trees are estimated by DBH class and standing dead tree heights are recorded in 10 foot classes. Limited tree defect information is collected, growth data is not collected, and small tree measurements are not made other than a percentage of the understory vegetation. Cost is minimized by limiting the information gathered and reducing measurement accuracy standards. Extensive - An extensive exam collects accurate tree measurements to tolerance standards tighter than a quick plot, but not as tight as an intensive exam.
    [Show full text]
  • Summary and Analysis of the Forest Inventory Project on the Yakima Indian Reservation
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1959 Summary and analysis of the forest inventory project on the Yakima Indian Reservation Harry James McCarty The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation McCarty, Harry James, "Summary and analysis of the forest inventory project on the Yakima Indian Reservation" (1959). Graduate Student Theses, Dissertations, & Professional Papers. 3780. https://scholarworks.umt.edu/etd/3780 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. A SUMMARY AND ANALYSIS OF THE FOREST INVENTORY PROJECT ON THE YAKIMA INDIAN RESERVATION By Harry J« MeCarty B.S« Utah State University, 1949 Presented in partial fulfillment of the requirements for the degree of Master of Forestry Montana State University 1959 — "N\ Approved byby/ W 1/ Lrman, Dean, Graduate School MAR 2 0 1959 Date UMI Number: EP34004 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI EP34004 Copyright 2012 by ProQuest LLC.
    [Show full text]
  • How Stand Productivity Results from Size- and Competition-Dependent Growth and Mortality
    How Stand Productivity Results from Size- and Competition-Dependent Growth and Mortality John P. Caspersen1*, Mark C. Vanderwel2, William G. Cole3, Drew W. Purves2 1 Faculty of Forestry, University of Toronto, Toronto, Canada, 2 Computational Ecology and Environmental Science Group, Microsoft Research, Cambridge, United Kingdom, 3 Ontario Forest Research Institute, Sault Ste. Marie, Canada Abstract Background: A better understanding of the relationship between stand structure and productivity is required for the development of: a) scalable models that can accurately predict growth and yield dynamics for the world’s forests; and b) stand management regimes that maximize wood and/or timber yield, while maintaining structural and species diversity. Methods: We develop a cohort-based canopy competition model (‘‘CAIN’’), parameterized with inventory data from Ontario, Canada, to examine the relationship between stand structure and productivity. Tree growth, mortality and recruitment are quantified as functions of diameter and asymmetric competition, using a competition index (CAIh) defined as the total projected area of tree crowns at a given tree’s mid-crown height. Stand growth, mortality, and yield are simulated for inventoried stands, and also for hypothetical stands differing in total volume and tree size distribution. Results: For a given diameter, tree growth decreases as CAIh increases, whereas the probability of mortality increases. For a given CAIh, diameter growth exhibits a humped pattern with respect to diameter, whereas mortality exhibits a U-shaped pattern reflecting senescence of large trees. For a fixed size distribution, stand growth increases asymptotically with total density, whereas mortality increases monotonically. Thus, net productivity peaks at an intermediate volume of 100–150 m3/ ha, and approaches zero at 250 m3/ha.
    [Show full text]
  • Forest Inventory Classification Using Aerial Image Texture in the New Brunswick Acadian Forest Region
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies Legacy Theses 1999 Forest inventory classification using aerial image texture in the New Brunswick Acadian forest region Maudie, Alan John Maudie, A. J. (1999). Forest inventory classification using aerial image texture in the New Brunswick Acadian forest region (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/11450 http://hdl.handle.net/1880/25178 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca THE UNIVERSITY OF CALGARY Forest Inventory Classification using Aerial Image Texture in the New Brunswick Acadian Forest Region b!J Alan John Maudie A THESIS SUBMITTED TO TKE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIRElMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF GEOGRAPHY CALGARY. ALBERTA JUNE. 1999 Q Alan John Maudie 1999 National Library Bibliothbque nationale du Canada Acquisitions and Acquisitions et Bibliographic Sewices services bibliographiques 395 Wellington Street 395. rue Wellington OthwaON KIA ON4 Ottawa ON K1AW Canada Canada Your M. Vmrs rib- Our - Nolre roMrma, The author has granted a non- L'auteur a accorde une licence non exclusive licence allowing the exclusive pernettant a la National Library of Canada to Bibliotheque nationale du Canada de reproduce, loan, distribute or sell reproduire, preter, distribuer ou copies of this thesis in microform, vendre des copies de cette these sous paper or electronic formats.
    [Show full text]
  • Ents: the Magazine of the Native Tree Society - Volume 1, Number 12, December 2011
    eNTS: The Magazine of the Native Tree Society - Volume 1, Number 12, December 2011 East Granby Farms Recreation Area, CT by sam goodwin » Wed Dec 14, 2011 8:15 pm 70 acres of active recreation with offices, playground and future playing fields. 410 acres of passive recreation with a parking area in active corn and hay fields. There is a red blazed trail that starts in the parking lot, passes through the hay field and follows a old farm road through a swampy area with a stream. I measured a white pine @ 10' cbh 90' high in this area. Still following the trail you come to overgrown field with a few small trees and alot of brambles. You then come to older trees as you start heading up to the ridge line and the Metacomet Trail which is still part of the farm. Not far from the field I measured a tulip tree, (see pictures), @ 8' 3" cbh 95' high. I also measured what I think is a hybrid sycamore/ planetree. It was 90' high. Some of the pictures show a birch with interesting roots. Heading back I measured and took pictures of a old, corner of the field, swamp white oak. It is 19'7" cbh @ 71'. Sam Goodwin Swamp white oak 50 eNTS: The Magazine of the Native Tree Society - Volume 1, Number 12, December 2011 birch 51 eNTS: The Magazine of the Native Tree Society - Volume 1, Number 12, December 2011 Update Dec. 15, 2011 Doug, just got back from checking the Farms tree… I remeasured the Farms oak and this time got 19'6" cbh.
    [Show full text]
  • Timber Supply and the Environment 4
    • CONTENTS Page MAP OF FIELD UNITS 2 TIMBER SUPPLY AND THE ENVIRONMENT 4 -STATION ADMINISTRATION STAFF RESEARCH WORK UNITS AND SCIENTISTS-1972 6 TO HOUSE THE NATION 10 SOME HIGHLIGHTS of 1972 DEVELOPMENTS 12 BIOLOGICAL CONTROLS 12 CHEMICALS 13 ECONOMICS IN FOREST MANAGEMENT' ' 15 ECONOMICS IN WOOD INDUSTRY 15 FIRE 16 GENERAL 16 GENETICS 18 INSECTS 19 LOGGING 20 MENSURATION 20 PATHOLOGY • 21 PHYSIOLOGY 22 PLANT ECOLOGY 22 -RANGE ECOSYSTEMS 25 RECREATION 26 REGENERATION '26 RESIDUES 28 SOILS, SITE, AND GEOLOGY 29 SUPPLY`AND DEMAND a 30 TIMBER MANAGEMENT 32 WATER QUALITY 32 WILDLIFE AND TIMBER 34 WOOD UTILIZATION 34 ANNOTATED LIST OF PUBLICATIONS BY GENERAL SUBJECTS-1972 37 LIST OF AUTHORS -. 51 The Station has now strengthened its informa- Fire Control, replaced John Dell. Dr. Tom Adams tion activities with the addition of Ms. Louise was assigned from PNW Station's marketing eco- Parker as Information Officer. Soon an attractive nomics unit; and Eldon Estep, a forest products newsletter will be distributed throughout the West utilization specialist of the Forest Service's State called What's New In Western Forest Research. We and Private Forestry program, came to us from the need to further strengthen communications with Forest Products Laboratory at Madison, Wis- cooperators and the news media and to put re- consin. search in a more digestible form. James L. Stewart became project leader for forest disease research at Corvallis. Stewart, a plant Staff Changes pathologist, formerly headed the Alexandria For- Dr. Donald C. Schmiege returned to Juneau as est Pest Control Zone office in Pineville, Lou- program leader of our newly constituted multi- isiana.
    [Show full text]
  • Vermont Forest Health Monitoring Protocol
    Vermont Forest Health Monitoring Protocol Contributing Authors: Sandra Wilmot, James Duncan, Jennifer Pontius, David Gudex - Cross, Christine Sandbach Last Updated: 5/23/2017. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Contents About the Vermont Forest Health Monitoring Program ............................................................................................... 1 Plot Establishment ......................................................................................................................................................... 3 Subplot Establishment .............................................................................................................................................. 3 Microplot Establishment ........................................................................................................................................... 4 Annular Ring Area ..................................................................................................................................................... 4 Plot Metrics Overview ................................................................................................................................................... 5 Overview of Subplot Measurements......................................................................................................................... 5 Tree Location and Structure ................................................................................................................................
    [Show full text]
  • Rd D Rg! Issued November 22, 1910
    THE WOODSMAN'S HANDBOOK Rd d rg! Issued November 22, 1910. U. S. DEPARTMENT OF AGRJCULTURE, FOREST SERVICEBULLETIN 36. HENRY S. GRAVES, FORESTER. THE WOODSMAN'S HANDBOOK (REVISED AND ENLARGED) BY HENRY S. GRAVES, FORESTER, AND E. A. ZIEGLER, DIRECTOR, PENNSYLVANIA STATE FOREST ACADEMY. WASHINGTON: GOVERNMENT PRINTING OFFICE. 1910. LETTER OF TRANSMITTAL. U. S. DEPARTMENT or AGRICULTURE, FOREST SERVICE, Washington, D. C., February 11, 1910. Sia: I have the honor to transmit herewith the manuscript ofa revised and enlarged edition of Bulletin 36 of the Forest Service, "The Woodsman's Handbook," and to recommend its publication to take the place of the proposed second part of this bulletin, so as to include both parts in one publication,The sixteen text figures are necessary for its proper illustration. Very respectfully. HENRY SOLON GRAVES, Forepter. Hon. JAMES WILsoN, Secretary of Agriculture. CONTENTS. Page. Introduction 11 Units of log measure 12 Board measure 13 The various log rules 14 Comparison of log rules for board measure (table) 16 The more important log rules 20 The Scribner Rule (description) 21) The Scribner "Decimal C" Rule (table) 21 The Doyle Rule (description) 25 The Doyle Rule (table) 26 The Spaulding Rule 31 The Maine Log Rule 31 Standard measure 31 The Nineteen-inch Standard Rule (description) 32 The New Hampshire (Blodgett) Rule (description) 32 Other Standard Rules. Log scaling Forest Service scaling directions 39 Cubic measure 43 Cubing logs by length and middle diameters Cubing logs by length and end diameters Solid cubic contents of logs (table) 46 Converting cubic measure to board measure 51 Relation between cubic contents and iw cut (table) 52 Cubic contents of square timber in a round log 53 The 1'wo-thirds Rule (description) 53 The Inscribed Square Rule (description) 53 The Inscribed Square Rule (table) 54 Cord measure Timber estimating Contents of standing trees Estimate by the eye 60 6 CONTENTS.
    [Show full text]