Macroinvertebrates Total Number of Kinds Tolerance Value Tolerance

Total Page:16

File Type:pdf, Size:1020Kb

Macroinvertebrates Total Number of Kinds Tolerance Value Tolerance Tolerance Tolerance Tolerance Tolerance Macroinvertebrates Total Number of Kinds Macroinvertebrates Total Number of Kinds Value Score Value Score Minnow mayflies 24 1 4 96 Riffle beetle 12 1 4 48 Brush-legged mayfly 3 0 Long-toed beetle 5 0 Flatheaded mayfly 4 1 3 12 Whirligig beetle 5 0 Spiny crawler mayfly 20 1 3 60 Water penny 3 0 Square-gilled mayflies 5 0 Other beetles 7 0 Prong-gilled mayfly 3 0 True bugs 8 0 Burrowing mayflies 4 0 Fishfly/Hellgrammite 3 0 Patterned stoneflies 1 0 Alderfly 6 0 Winter stoneflies 2 0 Non-biting midge 9 0 Little brown stonefly 2 0 Black fly 16 1 6 96 Roach-like stonefly 1 0 Crane fly 8 1 5 40 Giant stonefly 1 0 Watersnipe fly 3 0 Case-building caddisflies 3 0 Dance fly 6 0 Net-spinning caddisflies 132 1 4 528 Dixid midge 5 0 Common netspinner 248 1 5 1240 Net-wing midge 2 0 Free-living caddisfly 3 0 Horse fly 7 0 Dragonflies 1 1 4 4 Other fly larva 8 0 Damselflies 7 0 Aquatic moth 6 0 Non-Insect Groups Crayfish 5 0 Pea clam 5 0 Scud/Sideswimmer 1 1 5 5 Asian clam 6 0 Aquatic sowbug 1 1 7 7 Mussel 4 0 Water mites 6 0 Operculate snails 5 0 Aquatic worms 36 1 10 360 Non-operculate snails 7 0 Leeches 10 0 0 Other invertebrates Flatworms 36 1 7 252 0 Point Total Total number collected 539 Metrics Results 2748 Values Tolerance Total Taxa 13 6 59.1 22 EPT Taxa 5 6 39.2 13 This spreadsheet shows two different approaches for integrating the six metrics used to evaluate the conditions of the macroinvertebrate community. The first is Biotic Index 5.10 6 70.0 3.0 based on a relatively simple point value system; the second is based on best % EPT Abundance 79.4 8 88.2 90.0 standard values (BSV). These BSV are developed from reference conditions. Each % Dominance 46.0 4 67.5 20.0 metric is calculated and formulas are applied using either point values or BSV. The % Tolerant 13.5 6 88.2 2.0 example provided here is based on collections from a recent Elkhorn Creek survey. Stream Score 36 68.7 BSV Integrity rating Suboptimal Suboptimal .
Recommended publications
  • Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State 12-2009 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson Wichita State University, [email protected] Darcy E. Oishi 2Hawaii Department of Agriculture, Plant Pest Control Branch, Honolulu, [email protected] Brett C. Ratcliffe University of Nebraska-Lincoln, [email protected] Grant T. McQuate USDA-ARS-PBARC, U.S. Pacific Basin Agricultural Research Center, Hilo, HI, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Jameson, Mary Liz; Oishi, Darcy E.; Ratcliffe, Brett C.; and McQuate, Grant T., "Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii" (2009). Papers in Entomology. 147. https://digitalcommons.unl.edu/entomologypapers/147 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. AProcddition. HawaiianAl inv AEsiventomol scA.r SAocbs. in(2009) HAwA 41:25–30ii 25 Two Additional Invasive Scarabaeoid Beetles (Coleoptera: Scarabaeidae: Dynastinae) in Hawaii Mary Liz Jameson1, Darcy E. Oishi2, Brett C. Ratcliffe3, and Grant T. McQuate4 1Wichita State University, Department of Biological Sciences, 537 Hubbard Hall, Wichita, Kansas 67260 [email protected]; 2Hawaii Department of Agriculture, Plant Pest Control Branch, 1428 South King St., Honolulu, HI 96814 [email protected]; 3University of Nebraska State Museum, Systematics Research Collections, W436 Nebraska Hall, University of Nebraska, Lincoln, Nebraska 68588 [email protected]; 4USDA-ARS-PBARC, U.S.
    [Show full text]
  • Mountain Pine Beetle Voltinism and Life History Characteristics Across Latitudinal and Elevational Gradients in the Western United States
    For. Sci. 60(3):434–449 FUNDAMENTAL RESEARCH http://dx.doi.org/10.5849/forsci.13-056 entomology & pathology Mountain Pine Beetle Voltinism and Life History Characteristics across Latitudinal and Elevational Gradients in the Western United States Barbara Bentz, James Vandygriff, Camille Jensen, Tom Coleman, Patricia Maloney, Sheri Smith, Amanda Grady, and Greta Schen-Langenheim Substantial genetic variation in development time is known to exist among mountain pine beetle (Dendroctonus ponderosae Hopkins) populations across the western United States. The effect of this variation on geographic patterns in voltinism (generation time) and thermal requirements to produce specific voltinism pathways have not been investigated. The influence of voltinism on fitness traits, body size, and sex ratio is also unclear. We monitored mountain pine beetle voltinism, adult body size, sex ratio, and air temperatures at sites across latitudinal and elevational gradients in the western United States. With the exception of two sites at the coolest and warmest locations, the number of days required to complete a generation was similar. Thermal units required to achieve a generation, however, were significantly less for individuals at the coolest sites. Evolved adaptations explain this pattern, including developmental rates and thresholds that serve to synchronize cohorts and minimize cold-sensitive life stages in winter. These same adaptations reduce the capacity of mountain pine beetle at the warmest sites to take full advantage of increased thermal units, limiting the capacity for bivoltinism within the current realized distribution. Temperature was not correlated with adult size and sex ratio, and size was greatest in host trees other than lodgepole pine (Pinus contorta Dougl.).
    [Show full text]
  • Darkling Beetles and Mealworms Theresa A
    Darkling Beetles and Mealworms Theresa A. Dellinger and Eric R. Day, Department of Entomology, Virginia Tech Description Darkling beetles belong in the beetle family Tenebrionidae, which consists of more than 20,000 species of beetles. Adult darkling beetles widely range in shape and size, with most measuring from 2 – 19 mm (0.13” – 0.75”). Adults are usually a reddish-brown to brownish-black in color and can be shiny or dull. The elytra (the wing covers) can be smooth, grooved, or otherwise sculptured. Most do not have colorful patterns on their wing covers. Adults are most active at night and tend to avoid bright lights. Darkling beetle larvae are often referred to as mealworms or false wireworms. They are long, hard-bodied grubs with a cylindrical shape and are shiny yellow-brown to darKer brown in color. They are active crawlers. Yellow mealworm larva, top. Dark mealworm larva, bottom. Clemson University-USDA Cooperative Adult yellow mealworm, Tenebrio molitor. Extension Slide Series, Bugwood.org. Clemson University-USDA Cooperative Extension Slide Series, Bugwood.org. Life Cycle Darkling beetles have a complete life cycle with egg, larval, pupal, and adult stages. Most species of darkling beetles have a slow rate of development and may live for a year as an adult. Species living on grains or other stored products may develop faster. Habitat/Distribution Darkling beetles are found throughout the world except for places with very cold climates. They are scavengers and omnivores, feeding on decomposing plant material, dead insects, fungi, and stored products. Only a handful of darkling beetles are considered pests; the vast majority of them live in the wild and pose no harm.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Altitudinal Variation of Dung Beetle (Scarabaeidae: Scarabaeinae
    Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2005) 14, 327–337 Blackwell Publishing, Ltd. RESEARCH Altitudinal variation of dung beetle PAPER (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes Federico Escobar1,2,*, Jorge M. Lobo3 and Gonzalo Halffter1 1Departamento de Biodiversidad y ABSTRACT Comportamiento Animal, Instituto de Ecología, Aim We describe the changes in species richness, rarity and composition with alti- A.C., Apartado Postal 63, 91000 Xalapa, tude, and explore whether the differences in Scarabaeinae dung beetle composition Veracruz, México; 2Programa de Inventarios de Biodiversidad, Instituto Humboldt, Apartado along five altitudinal transects of the same mountain range are related to altitude or Aéreo 8693 Santafé de Bogotá, Colombia; and if there are interregional differences in these altitudinal gradients. 3 Departamento de Biodiversidad y Biología Location Field work was carried out on the eastern slope of the eastern Cordillera, Evolutiva, Museo Nacional de Ciencias Colombian Andes, between Tamá Peak to the north, in the Tamá National Park Naturales (CSIC), c/José Gutiérrez Abascal, 2. (07°23′ N, 72°23′ W) and the San Miguel River (00°28′ N, 77°17′ W) to the south. E-28006 Madrid, Spain Methods Sampling was carried out between February 1997 and November 1999 in five regions spanning elevation gradients. In each gradient, six sites were chosen at 250 m intervals between 1000 and 2250 m a.s.l. Results We found a curvilinear relationship between altitude and mean species rich- ness, with a peak in richness at middle elevations. However, the diversity of dung beetle assemblages does not seem to be related to the interregional differences in environ- mental conditions.
    [Show full text]
  • DARKLING BEETLE Or STINK BEETLE Class Order Family Genus Species Insecta Coleoptera Tenebrionidae Eleodes Spp
    DARKLING BEETLE or STINK BEETLE Class Order Family Genus Species Insecta Coleoptera Tenebrionidae Eleodes spp Range: Found worldwide. 100 species in this genus in California. Habitat: Forests, grasslands, and deserts. Found under rocks and logs during the day. Niche: Herbivorous, terrestrial, nocturnal Diet: Wild: Scavenge on a wide variety of decaying and fresh plant and animal matter Zoo: Apple, monkey chow, lettuce Special Adaptations: The forewing (elytra) is fused so this beetle is flightless. They have chewing mouthparts and adults have a hard exoskeleton, smooth and black and are a little over an inch long. Antennae are thread-like, but some species’ are slightly enlarged at the terminal end and appear club-like. Darkling beetles undergo a complete metamorphosis. The eggs are laid in soil. The mealworm is the larval state of the darkling beetle and may molt 9-20 times. The adults will live 3-15 years. Compound eyes are kidney-shaped or notched rather than round. These beetles do not need to drink and can produce water metabolically; also their wings are fused to reduce water loss. Other: When disturbed, they will stand on their heads and elevate their rear end and emit a foul-smelling odor. This emission makes them unpalatable to would-be predators. Hence an alternate common name of “stink beetle”. They are sexually dimorphic. The cactus longhorn beetle mimics the darkling beetle because of the smell. Complete metamorphosis. ▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼▲▼ DERMESTID BEETLE or SKIN BEETLE Class Order Family Genus Species Insecta Coleoptera Dermestidae Dermestes maculatus Range: Worldwide distribution except Antarctica Habitat: on dead animals Niche: Scavengers, omnivorous, terrestrial Diet: Wild: dry animal or plant material such as skin or pollen, animal hair, feathers, dead insects and natural fibers Zoo: Special Adaptations: Undergo complete metamorphosis.
    [Show full text]
  • Elm Bark Beetles Native and Introduced Bark Beetles of Elm
    Elm Bark Beetles Native and introduced bark beetles of elm Name and Description—Native elm bark beetle—Hylurgopinus rufipes Eichhoff Smaller European elm bark beetle—Scolytus multistriatus (Marsham) Banded elm bark beetle—S. schevyrewi Semenov [Coleoptera: Curculionidae: Scolytinae] Three species of bark beetles are associated with elms in the United States: (1) the native elm bark beetle (fig. 1) occurs in Canada and south through the Lake States to Alabama and Mississippi, including Kansas and Nebraska; (2) the introduced smaller European elm bark beetle (fig.2) occurs through- out the United States; and (3) the introduced banded elm bark beetle (fig. 3) is common in western states and is spreading into states east of the Missis- sippi River. Both the smaller European elm bark beetle and the banded elm bark beetle were introduced into the United States from Europe and Asia, respectively. Hylurgopinus rufipes adults are approximately 1/12-1/10 inch (2.2-2.5 mm) long; Scolytus multistriatus adults are approximately 1/13-1/8 inch (1.9-3.1 mm) long; and S. schevyrewi adults are approximately 1/8-1/6 inch (3-4 mm) long. The larvae are white, legless grubs. Hosts—Hosts for the native elm bark beetle include the various native elm Figure 1. Native elm bark beetle. Photo: J.R. species in the United States and Canada, while the introduced elm bark Baker and S.B. Bambara, North Carolina State University, Bugwood.org. beetles also infest introduced species of elms, such as English, Japanese, and Siberian elms. American elm is the primary host tree for the native elm bark beetle.
    [Show full text]
  • Ground Beetles: Warriors on Your Farm
    Fact Sheet 2018-01 Ground Beetles: Warriors on Your Farm Gladis Zinati1,*, Ph.D., Director of Vegetable Systems Trial Andrew Smith1, Ph.D., Chief Scientist Joe Ingerson-Mahar2, Ph.D., Vegetable IPM Program Coordinator 1Rodale Institute, 611 Siegfriedale Road, Kutztown, PA 19530 2Rutgers University, 104 Thompson Hall, 96 Lipman Dr.,New Brunswick, NJ 08901 *Contact information Email: [email protected] Many vegetable growers choose to use Life Cycle pesticides to keep pests from destroying their vegetable crops. Instead, farmers Ground beetles pass through four life stages: should consider the safe and sustainable egg, larva, pupa and adult. Eggs are laid in alternative: encouraging and enhancing moist soil. Upon hatching, the larvae dwell populations of pests’ natural enemies. in the soil. Larvae are elongated, and their Ground beetles (a.k.a. carabid beetles or heads are relatively large with distinct carabids) are a naturally-occurring pest mandibles. Larvae feed on soft-bodied, soil- control. dwelling insects and their eggs for two to four weeks, then pupate. Most species This fact sheet provides a quick guide to complete their life cycle from egg to adult in carabid beetles as beneficial insects that can one year. Adults overwinter in the soil and be populated on your farm. With good emerge again in the spring. management, they will become the warriors that feed on pests. Appreciating Ground Beetles Ground beetles are a diverse group of insects with 2,000 species inhabiting North America. They typically live in the soil and are usually active at night. Adult ground beetles range in size from about 1/8 inch to Harpalus pensylvanicus Chlaenius tricolor 1 ¼ inch (2mm to over 35mm).
    [Show full text]
  • Western Balsam Bark Beetle Star-Shaped Egg Galleries
    Western Balsam Bark Beetle Star-shaped egg galleries Name and Description—Dryocoetes confusus (Swaine) [Coleoptera: Curculionidae: Scolytinae] Adult western balsam bark beetles are shiny, dark- colored, and approximately 1/6 inch (3.4-4.3 mm) long. The rear edges of the wing covers are abruptly rounded and do not have spines. Both male and female beetles have patches of “hairs” on the fronts of their heads. Females have a dense and distinctive patch of these “hairs” (fig. 1). Hosts—Subalpine fir, Abies lasiocarpa, other true Figure 1. Western balsam bark beetle adults; female on the firs, and very rarely, Engelmann spruce and lodge- left, male on the right. Note the dense patch of “hairs” at front pole pine of female’s head. Photo: Rocky Mountain Region, USDA Forest Service, Bugwood.org. Life Cycle—The biology of this beetle is not well known, but a 2-year life cycle has been documented in this Region. The first winter is spent beneath the bark as larvae and the second as near fully developed adults. Approximately midsummer, male beetles initiate attacks on trees and construct nuptial chambers beneath the bark. They attract several female beetles. After mat- ing, female beetles construct egg galleries that radiate from the nuptial chamber, forming a stellate gallery pattern (fig. 2). Larvae feed away from the egg galleries. Females are capable of producing eggs during the initial summer of attack and in the following spring. The resulting gallery pattern and brood makeup is often confusing, hence the name, Dryocoetes confusus. Two flight periods have been ob- served in Utah: a large flight in early to midsummer and a smaller flight in the fall.
    [Show full text]
  • On the Origin and Evolutionary Diversification of Beetle Horns
    On the origin and evolutionary diversification of beetle horns Douglas J. Emlen*†, Laura Corley Lavine‡, and Ben Ewen-Campen* *Division of Biological Sciences, University of Montana, Missoula, MT 59812; and ‡Department of Entomology, Washington State University, Pullman, WA 99164 Many scarab beetles produce rigid projections from the body called beetle horn evolution. This integration of perspectives comprises an horns. The exaggerated sizes of these structures and the stagger- important step in our attempts to elucidate the myriad ways in ing diversity of their forms have impressed biologists for centuries. which these exaggerated structures have radiated in form. It also Recent comparative studies using DNA sequence-based phylog- illustrates the more general theme of this colloquium: that ‘‘Dar- enies have begun to reconstruct the historical patterns of beetle winian’’ processes of selection, combined with subtle genetic vari- horn evolution. At the same time, developmental genetic experi- ations in basic developmental processes, can account for the origin, ments have begun to elucidate how beetle horns grow and how and the subsequent diversification of even the most extreme animal horn growth is modulated in response to environmental variables, structures. such as nutrition. We bring together these two perspectives to show that they converge on very similar conclusions regarding A Natural History of Beetles with Horns beetle evolution. Horns do not appear to be difficult structures to Beetle horns are weapons: they are used in combat between rival gain or lose, and they can diverge both dramatically and rapidly in males over access to females (9–11). These contests tend to occur form. Although much of this work is still preliminary, we use in physically restricted substrates, such as on branches or bamboo available information to propose a conceptual developmental shoots or more commonly, inside the confines of tunnels.
    [Show full text]
  • Small Hive Beetle
    State of Hawai‘i New Pest Advisory DEPARTMENT OF AGRICULTURE No. 12-01 Issued January 2012 Small Hive Beetle Aethina tumida Murray (Coleoptera: Nitidulidae) Jacqueline D. Robson Figure 1: Adult small hive beetle (approx. 3/16” or 5mm) Introduction. In April 2010, a beekeeper in Egypt (2000), Australia (2001), Canada (2002), Pana‘ewa, on the Big Island, contacted Portugal (2004), Mexico (2007) and Hawai‘i HDOA’s entomologist in Hilo about beetles he (2010). In Hawai‘i, SHB is currently widely had found inside his hives. The entomologist distributed on both O‘ahu and the Big Island. It collected four beetles and together with HDOA was also detected on Moloka‘i and Maui in entomologists in Honolulu, made a preliminary 2011 but widespread reports have not yet identification of small hive beetle (SHB). This occurred. was confirmed on April 30, 2010 by the U.S. Department of Agriculture’s National Identification Service in Riverdale, MD. Description. Adult SHB are brown on emergence, changing to black after a few days. Beetles are oval shaped and are approximately 3/16 inch long. In the hive, they run quickly and avoid light. Larvae are off- white and elongated with 2 rows of spines running the length of their dorsal side - they grow to a length of approximately 7/16 inch before pupation. SHB larvae crawl out of the hive and drop to the soil beneath to pupate. Although SHB prefers to live with honey bees, it can also complete its life cycle on several types of fruit found locally. Figure 2. Small hive beetle adults and larvae feeding on honey comb.
    [Show full text]
  • Method for Continuously Rearing Coccinella Lady Beetles (Coleoptera: Coccinellidae)
    42 The Open Entomology Journal, 2012, 6, 42-48 Open Access Method for Continuously Rearing Coccinella Lady Beetles (Coleoptera: Coccinellidae) Louis S. Hesler*,1, Ginger McNickle2, Michael A. Catangui3, John E. Losey4, Eric A. Beckendorf1, Leonard Stellwag4, Danielle M. Brandt2, and Pamela B. Bartlett2 1 North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD 57006, USA 2 Plant Science Department, South Dakota State University, Brookings, SD 57007, USA 3 47153 S. Clubhouse Road, Sioux Falls, SD 57108, USA 4 Department of Entomology, Cornell University, Ithaca, NY 14853, USA Abstract: Coccinella novemnotata L., the ninespotted lady beetle, and Coccinella transversoguttata richardsoni Brown, the transverse lady beetle, are predatory species whose abundance has declined significantly over the last few decades in North America. An ex situ system for continuously rearing these two beetles is described here to aid conservation efforts and facilitate studies aimed at determining factors in their decline and possible recovery. All rearing of lady beetles was conducted in the laboratory at or near room temperatures and 16:8 L:D photoperiod. The two coccinellid species were each reared separately, and different life stages were handled independently. Eggs were collected every 1 to 2 d and placed in holding containers, and individual clutches were transferred to cages with prey when their eggs began to hatch. Neonate larvae were fed live bird cherry-oat aphids [Rhopalosiphum padi (L.)] for 3 to 4 d, and second instars were trans- ferred to different cages and fed live pea aphids [Acyrthosiphon pisum (Harris)]. Third and fourth instars were also fed pea aphids, but reared individually in small cups to preclude cannibalism.
    [Show full text]