Resonators in Insect Sound Production: How Insects Produce Loud Pure-Tone Songs

Total Page:16

File Type:pdf, Size:1020Kb

Resonators in Insect Sound Production: How Insects Produce Loud Pure-Tone Songs The Journal of Experimental Biology 202, 3347–3357 (1999) 3347 Printed in Great Britain © The Company of Biologists Limited 1999 JEB2136 RESONATORS IN INSECT SOUND PRODUCTION: HOW INSECTS PRODUCE LOUD PURE-TONE SONGS H. C. BENNET-CLARK* Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK *e-mail: [email protected] Accepted 15 June; published on WWW 16 November 1999 Summary In a resonant vibration, two reactive elements, such as a produced by the excitation of a simple resonator, the song mass and a spring, interact: the resonant frequency frequency may not be constant, suggesting that other depends on the magnitude of these two elements. The build- factors, such as the mechanism of excitation, or variation up and decay of the vibration depend on the way the of the effective mass or elasticity of the system during resonator is driven and on the damping in the system. sound production, may be additional determinants of the The evidence for the existence of resonators in insect song frequency. sound production is assessed. The mechanics of different Loud, and hence efficient, transduction of the energy of types of sound-producing system found in insects is a mechanical resonator into sound may involve a second described. Mechanical frequency-multiplier mechanisms, stage of transduction which, by damping the resonator, which convert the relatively slow contraction of muscles to may compromise tonal purity. Some insect singers resolve the higher frequency of the sound, are commonly used to this problem by tuning both stages of transduction to the convert the comparatively slow muscle contraction rate to same frequency, thereby maintaining tonal purity. the higher frequency of the sound. The phasing and rate of mechanical excitation may also affect the frequency and duration of the sound that is produced. Key words: insect, sound production, bioacoustics, resonator, cicada, Although in many insects the song may appear to be cricket. Introduction The songs of insects may be shrill, raucous or musical, brief power, as occurs in a trumpet mouthpiece or a clock or sustained but, whether loud or quiet, they tend to convey escapement. information within a narrow band of sound frequencies. The Simple resonators rely on the interplay between two reactive narrow frequency band implies that the sound-producing elements. Consider the simple case of a mass swinging on a system is in some way tuned. In this review, I shall address the spring (Fig. 1): at the extreme of the swing of the mass, it has mechanisms by which sharply tuned sounds are produced by zero velocity and thus zero kinetic energy, but the strain energy insects and explore the acoustical and biomechanical in the spring is maximal; as the mass swings through the centre mechanisms by which insects produce narrow-band sound of its arc, its velocity is maximal so its kinetic energy is signals. I shall also examine the transduction chains involved maximal, but the stored or strain energy in the straight spring in the conversion of muscle power to sound power. is zero; the mass then decelerates to zero velocity as its kinetic energy is absorbed by the spring; the mass then re-accelerates in the opposite direction and so on. What is a resonator? The frequency of the vibration or resonant frequency, Fo, Resonators occur in many everyday forms such as whistles determined by the mass and the compliance of the spring, is and bells, pipes and drums, the pendulum of a clock, the given by: balance spring-and-wheel or the quartz crystal of a watch. All these resonant systems are employed for similar reasons: they 1 1 1 s Fo = = , (1) vibrate at or near a single frequency, whether that is a musical 2π Ί m × c 2π Ί m note or is used as a basic timing mechanism; their vibration can be excited by an impulse, whether by a puff of air, a where m is the mass, c is the compliance and s is the stiffness mechanical impact or an electrical pulse; and their vibration (the compliance of a spring is the reciprocal of its stiffness). can be sustained by continued excitation, by supplying A similar process of transfer of energy between two appropriately phased acoustic, electrical or mechanical components occurs in the simple electrical series resonant 3348 H. C. BENNET-CLARK A A practical resonator, vibrating freely, will come to rest Mass stops, because the energy of vibration is lost by friction, as heat, or Energy is stored then reverses is otherwise dissipated, for instance as sound. Ways in which in spring direction this energy loss might occur are shown in the model systems of Fig. 2. If very little of the energy of vibration of the system is lost, the vibration will, by Newton’s first law, persist; this will occur because the resistive damping is small. Stored energy In a heavily damped system, the vibration will decay rapidly. accelerates mass Kinetic energy of In either case, the amplitude of vibration tends to decay mass will store exponentially. energy in spring A useful dimensionless index of the damping of a resonant B system is the quality factor, Q, which can be measured in Energy stored in spring is maximal various related ways (Morse, 1948; Fletcher, 1992). Spring has zero The Q of any of the resonators described above can be Mass has stored energy zero kinetic obtained by measuring the amplitude of successive cycles of energy the free decay following a driven oscillation. Q is then given by the slope of a plot of the natural logarithm of the amplitude per cycle during the decay (known as the loge decrement): π Kinetic energy of Q =.(2) mass is maximal loge decrement Fig. 1. Diagrams of a simple resonator composed of a mass and This method of measurement of Q has been used in a biological spring. (A) The kinetics of the system showing how elastic strain context to describe the resonators on cricket wings (Nocke, energy in the spring accelerates the mass and the kinetic energy of 1971) or those involved in cicada sound production (Bennet- the mass is converted into strain energy in the spring. (B) How Clark and Young, 1992; Young and Bennet-Clark, 1995). energy is transferred from the spring to the mass and vice versa. The decaying transient that follows impulsive excitation of a resonance is found in many sound-producing systems, such as bells or the succession of pulses that make up the songs of circuit shown in Fig. 2A, in which the capacitor acts many bush crickets. However, many biological and musical compliantly, in a manner analogous to a spring, and the sounds are produced as driven resonances, in which the inductor behaves inertially, in a manner analogous to a mass. vibration is sustained by regular re-excitation at an appropriate Likewise, in an acoustic resonator, such as the Helmholtz frequency and phase. An everyday example of this is the resonator in Fig. 2B, the two reactive elements that determine maintenance of the swing of a clock pendulum using packets the resonant frequency are analogues of a compliance or spring of energy liberated at an appropriate phase by the escapement, and an inertance or mass. which is coupled to the pendulum (Gazeley, 1956). The AB C Driver a.c. source Source of vibration Capacitance Fluid-filled Spring or C (compliance) cavity elastic element Fig. 2. Diagrams comparing electrical, acoustic and mechanical resonators to L Inductance show that each acts by the interaction (mass-like) between two reactive elements: an Neck Mass analogue of mass, and an analogue of compliance or elasticity. In practical Resistive load Load where energy oscillators, the energy of oscillation is R where energy Mouth is dissipated Liquid dissipated by a viscous or resistive is dissipated (viscous damping) load, which causes the amplitude of (damping) oscillation to decay exponentially Electrical Acoustic Mechanical mass, (see Fig. 7B,C). C, capacitance; L, resonant Helmholtz spring and dashpot inductance; R, resistance. LCR circuit resonator resonator Resonators in insect sound production 3349 A frequency or the phase of a forced vibration lags that of the ≈ 0 Fo 4.85 kHz driving force by 90 °, a simple resonator may be implicated. In −3 dB practice, it is easier to measure amplitude than phase so the -5 phase information tends to be ignored. -10 The songs of many insects, such as crickets (Elliott and Koch, 1985; Koch et al., 1988), some bush crickets (Bailey, -15 1970) and certain cicadas (Bennet-Clark and Young, 1992), appear to be produced as forced vibrations of comparatively -20 F Q = o simple resonators (Table 1). For detailed treatments of − -25 Bandwidth bandwidth at 3 dB different types of resonators, their parameters and how their Relative amplitude (dB) − 4.85 at 3 dB Q = = 24 resonant frequencies scale, see, for example, Fletcher, 1992; ≈ -30 0.2 kHz 0.2 Morse, 1948; Olson, 1957. 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Frequency (kHz) Types of resonators implicated in insect sound production There have been comparatively few formal studies of the 0 B Phase angle is −90° reactive elements that determine the frequency in insect sound- ≈ at Fo 4.85 kHz producing mechanisms. Because biological structures rarely -45 have a simple geometry with discrete disposition of the mass F and compliance (or its acoustic analogues), the studies that Q = o exist have resorted to models based on known types of -90 bandwidth at ±45° 4.85 mechanical or acoustic resonator. Q = = 24 There is abundant evidence in a few cases for the existence Bandwidth 0.2 -135 at ±45° of a resonator, such as the detailed and elegant analysis of the relative to Fo vibrations of the harp area of the forewings of male Gryllus ≈ 0.2 kHz campestris by Nocke (1971).
Recommended publications
  • Phylogeny for the Tribe Thophini (Cicadoidea: Cicadidae) with the Description of a New Subspecies of Thopha Sessiliba Distant from Western Australia
    © The Authors, 2015. Journal compilation © Australian Museum, Sydney, 2015 Records of the Australian Museum (2015) Vol. 67, issue number 2, pp. 55–66. ISSN 0067-1975 (print), ISSN 2201-4349 (online) http://dx.doi.org/10.3853/j.2201-4349.67.2015.1634 Phylogeny for the Tribe Thophini (Cicadoidea: Cicadidae) with the Description of a New Subspecies of Thopha sessiliba Distant from Western Australia M. S. MOULDS1* AND KATHY B. R. HILL2 1 Entomology Department, Australian Museum, 6 College St, Sydney NSW 2010, Australia 2 University of Connecticut, Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, Storrs, CT 06269, United States of America [email protected] ABSTRACT. A molecular phylogeny for the cicada tribe Thophini (Thopha + Arunta) is provided together with a cladistic analysis based on morphological data. A new subspecies, Thopha sessiliba clamoris, is described from the eastern fringe of the Pilbara region of Western Australia, based on molecular, morphological, and behavioral evidence. All described species of Thopha are figured and a revised key to the five species and two subspecies provided. A discussion on the biogeography of the genus is also included. MOULDS, M. S., AND KATHY B. R. HILL. 2015. Phylogeny for the tribe Thophini (Cicadoidea: Cicadidae) with the description of a new subspecies of Thopha sessiliba Distant from Western Australia. Records of the Australian Museum 67(2): 55–66. The two genera of the tribe Thophini, Thopha Amyot & be absent. Here we present molecular evidence showing Serville and Arunta Distant, are recognized by greatly that western T. sessiliba are a separate evolutionary lineage swollen timbal covers (Moulds, 2005, 2012).
    [Show full text]
  • AND BODY of CICADA": IMPRESSIONS of the LANTERN-FLY (HEMIPTERA: FULGORIDAE) in the VILLAGE of Penna BRANCA" BAHIA STATE, BRAZIL
    Journal of Ethnobiology 23-46 SpringiSummer 2003 UHEAD OF SNAKE, WINGS OF BUTTERFL~ AND BODY OF CICADA": IMPRESSIONS OF THE LANTERN-FLY (HEMIPTERA: FULGORIDAE) IN THE VILLAGE OF PEnnA BRANCA" BAHIA STATE, BRAZIL ERALDO MEDEIROS COSTA-NElO" and JOSUE MARQUES PACHECO" a Departtll'rtl?nto de Cit?t1Cias BioMgicasr Unh:rersidade Estadual de Feira de Santana, Km 3, BR 116, Campus Unirl£rsitario, eEP 44031-460, Ferra de Santana, Bahia, Brazil [email protected],br b DepartmHemo de Biowgifl Evolutim e Ecologia, Unit:rersidade Federal de Rod. Washington Luis, Km 235, Caixa Postal 676, CEP 13565~905, Sao Silo Paulo, Brazil r:~mail: [email protected] To the memory of Darrell Addison Posey (1947-2001) ABSTRACT.-Four aspects of the ethnoentomology of the lantern-fly (Fulgora la­ temari" L., 1767) were studied in Pedra Branca, Brazil. A total of 45 men and 41 women were consulted through open-ended interviews and their actions were observed in order to document the wisdom, beliefs, feelings, and behaviors related to the lantern-fly. People/s perceptions of the ex.temal shape of the insect influence its ethnotaxonomy, and they may categorize it into five different ethnosemantic domains, VilJagers a.re familiar with the habitat and food habits of the lantern- fly; they it lives on the trunk of Simarouba sp. (Simaroubaceae} by feeding on sap with aid of its 'sting: The culturally constructed attil:tldes toward this insect are that it is a fearsome organism that should be extlimninated .vhenever it is found because it makes 'deadly attacks.' on plants and human beings.
    [Show full text]
  • Young Naturalists Teachers Guides Are Provided Free of Charge to Classroom Teachers, Parents, and Students
    MINNESOTA CONSERVATION VOLUNTEER Young Naturalists Prepared by “Buggy Sounds of Summer” Jack Judkins, Multidisciplinary Classroom Activities Department of Education, Teachers guide for the Young Naturalists article “Buggy Sounds of Summer,” by Larry Weber. Illustrations by Taina Litwak. Published in the July–August 2004 Conservation Bemidji State Volunteer, or visit www.dnr.state.mn.us/young_naturalists/buggysounds University Young Naturalists teachers guides are provided free of charge to classroom teachers, parents, and students. This guide contains a brief summary of the articles, suggested independent reading levels, word counts, materials list, estimates of preparation and instructional time, academic standards applications, preview strategies and study questions overview, adaptations for special needs students, assessment options, extension activities, Web resources (including related Conservation Volunteer articles), copy-ready study questions with answer key, and a copy-ready vocabulary sheet. There is also a practice quiz (with answer key) in Minnesota Comprehensive Assessments format. Materials may be reproduced and/or modified a to suit user needs. Users are encouraged to provide feedback through an online survey at www. dnr.state.mn.us/education/teachers/activities/ynstudyguides/survey.html. Note: this guide is intended for use with the PDF version of this article. Summary “Buggy Sounds of Summer” introduces readers to crickets, katydids, and cicadas, three insects that make sounds with specialized body parts. Through photos,
    [Show full text]
  • THE LITTLE THINGS THAT RUN the CITY 30 AMAZING INSECTS THAT LIVE in MELBOURNE! © City of Melbourne 2017 First Published May, 2017 ISBN 978-1-74250-900-6
    THE littleTHINGS that run the city BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA In partnership with City of Melbourne 30 amazing insects that live in Melbourne! THE LITTLE THINGS THAT RUN THE CITY 30 AMAZING INSECTS THAT LIVE IN MELBOURNE! © City of Melbourne 2017 First published May, 2017 ISBN 978-1-74250-900-6 ABOUT THIS PROJECT This book is an outreach educational resource prepared by Kate Cranney, Sarah Bekessy and Luis Mata for the City of Melbourne. Kate, Sarah and Luis work as part of the Interdisciplinary Conservation Science Research Group at RMIT University in Melbourne, Australia. THE Illustrations: Kate Cranney Ink on paper, www.katecranney.com Photographs: Luis Mata flickr.com/photos/dingilingi/ Graphic Design: Kathy Holowko THANK YOU We wish to acknowledge the support of the Australian Government’s little National Environmental Science Programme - Clean Air and Urban THINGS Landscapes and Threatened Species Hubs, and the Australian Research Council Centre of Excellence for Environmental Decisions. The book was inspired by ‘The Little Things that Run the City – Insect ecology, biodiversity and conservation in the that run the city City of Melbourne’ research project (Mata et al. 2016). We are very grateful to the Australian Museum (http://australianmuseum.net.au/insects), the Museum Victoria BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA (https://museumvictoria.com.au/bugs/), the CSIRO’s ‘What Bug is That’ program (http://anic.ento.csiro.au/insectfamilies/) In partnership with City of Melbourne and ‘The Insects of Australia - A textbook for students and research workers’ book (Naumann et al. 1991). Thank you to Dr.
    [Show full text]
  • Animal Bioacoustics
    Sound Perspectives Technical Committee Report Animal Bioacoustics Members of the Animal Bioacoustics Technical Committee have diverse backgrounds and skills, which they apply to the study of sound in animals. Christine Erbe Animal bioacoustics is a field of research that encompasses sound production and Postal: reception by animals, animal communication, biosonar, active and passive acous- Centre for Marine Science tic technologies for population monitoring, acoustic ecology, and the effects of and Technology noise on animals. Animal bioacousticians come from very diverse backgrounds: Curtin University engineering, physics, geophysics, oceanography, biology, mathematics, psychol- Perth, Western Australia 6102 ogy, ecology, and computer science. Some of us work in industry (e.g., petroleum, Australia mining, energy, shipping, construction, environmental consulting, tourism), some work in government (e.g., Departments of Environment, Fisheries and Oceans, Email: Parks and Wildlife, Defense), and some are traditional academics. We all come [email protected] together to join in the study of sound in animals, a truly interdisciplinary field of research. Micheal L. Dent Why study animal bioacoustics? The motivation for many is conservation. Many animals are vocal, and, consequently, passive listening provides a noninvasive and Postal: efficient tool to monitor population abundance, distribution, and behavior. Listen- Department of Psychology ing not only to animals but also to the sounds of the physical environment and University at Buffalo man-made sounds, all of which make up a soundscape, allows us to monitor en- The State University of New York tire ecosystems, their health, and changes over time. Industrial development often Buffalo, New York 14260 follows the principles of sustainability, which includes environmental safety, and USA bioacoustics is a tool for environmental monitoring and management.
    [Show full text]
  • “Can You Hear Me?” Investigating the Acoustic Communication Signals and Receptor Organs of Bark Beetles
    “Can you hear me?” Investigating the acoustic communication signals and receptor organs of bark beetles by András Dobai A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science In Biology Carleton University Ottawa, Ontario © 2017 András Dobai Abstract Many bark beetle (Coleoptera: Curculionidae: Scolytinae) species have been documented to produce acoustic signals, yet our knowledge of their acoustic ecology is limited. In this thesis, three aspects of bark beetle acoustic communication were examined: the distribution of sound production in the subfamily based on the most recent literature; the characteristics of signals and the possibility of context dependent signalling using a model species: Ips pini; and the acoustic reception of bark beetles through neurophysiological studies on Dendroctonus valens. It was found that currently there are 107 species known to stridulate using a wide diversity of mechanisms for stridulation. Ips pini was shown to exhibit variation in certain chirp characteristics, including the duration and amplitude modulation, between behavioural contexts. Neurophysiological recordings were conducted on several body regions, and vibratory responses were reported in the metathoracic leg and the antennae. ii Acknowledgements I would like to thank my supervisor, Dr. Jayne Yack for accepting me as Master’s student, guiding me through the past two years, and for showing endless support and giving constructive feedback on my work. I would like to thank the members of my committee, Dr. Jeff Dawson and Dr. John Lewis for their professional help and advice on my thesis. I would like to thank Sen Sivalinghem and Dr.
    [Show full text]
  • A New Neotibicen Cicada Subspecies (Hemiptera: Cicadidae)
    Zootaxa 4272 (4): 529–550 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4272.4.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C6234E29-8808-44DF-AD15-07E82B398D66 A new Neotibicen cicada subspecies (Hemiptera: Cicadidae) from the southeast- ern USA forms hybrid zones with a widespread relative despite a divergent male calling song DAVID C. MARSHALL1 & KATHY B. R. HILL Dept. of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., Storrs, CT 06269 USA 1Corresponding author. E-mail: [email protected] Abstract A morphologically cryptic subspecies of Neotibicen similaris (Smith and Grossbeck) is described from forests of the Apalachicola region of the southeastern United States. Although the new form exhibits a highly distinctive male calling song, it hybridizes extensively where it meets populations of the nominate subspecies in parapatry, by which it is nearly surrounded. This is the first reported example of hybridization between North American nonperiodical cicadas. Acoustic and morphological characters are added to the original description of the nominate subspecies, and illustrations of com- plex hybrid song phenotypes are presented. The biogeography of N. similaris is discussed in light of historical changes in forest composition on the southeastern Coastal Plain. Key words: Acoustic behavior, sexual signals, hybridization, hybrid zone, parapatric distribution, speciation Introduction The cryptotympanine cicadas of North America have received much recent attention with the publication of comprehensive molecular and cladistic phylogenies and the reassignment of all former North American Tibicen Latreille species into new genera (Hill et al.
    [Show full text]
  • Supporting Information
    Supporting Information Campbell et al. 10.1073/pnas.1421386112 SI Materials and Methods transformed into Escherichia coli JM109 High Efficiency Com- Genome Sequencing. The following amount of data were generated petent Cells. Transformed cells were grown in 3 mL of LB broth at for each sequencing technology: 136,081,956 pairs of 100 × 2 37 °C overnight, and plasmids were purified with E.Z.N.A. plas- short insert Illumina HiSeq reads for about 27 Gb total; 50,884,070 mid DNA mini kit I. The purified plasmids were used as PCR pairs of 100 × 2 large insert HiSeq reads for about 10 Gb total; templates to for further amplification of the probe region. The and 259,593 reads averaging 1600 nt for about 421 Mb total of amplified probes were subject to nick translation (>175 ng/μL PacBio data. DNA, 1× nick-translation buffer, 0.25 mM unlabeled dNTPs, 50 μM labeled dNTPs, 2.3 U/μL DNA polymerase I, 9 mU/μL Genome Annotation. Annotation of Hodgkinia DNA was done Dnase), using either Cy3 (MAGTRE006 and MAGTRE005), or using the phmmer module of HMMER v3.1b1 (1). All ORFs Cy5 (MAGTRE001 and MAGTRE012), and size selected for beginning with a start codon that overlapped a phmmer hit sizes in the range of 100–500 bp using Ampure XP beads. Probes were searched against a database of all Hodgkinia genes using with at least seven incorporated labeled dNTPs per 1,000 nucle- BLASTX 2.2.28+. MAGTRE Hodgkinia genes were considered otides as determined by spectroscopy were used for hybridization.
    [Show full text]
  • The Neuromuscular Mechanism of Stridulation in Crickets (Orthoptera: Gryllidae)
    J. Exp. Biol. (1966), 45, isi-164 151 With 8 text-figures Printed in Great Britain THE NEUROMUSCULAR MECHANISM OF STRIDULATION IN CRICKETS (ORTHOPTERA: GRYLLIDAE) BY DAVID R. BENTLEY AND WOLFRAM KUTSCH Department of Zoology, University of Michigan, Aim Arbor, and Institute for Comparative Animal Physiology, University of Cologne {Received 21 February 1966) INTRODUCTION Study of the insect neuromuscular system appears very promising as a means of explaining behaviour in terms of cellular operation. The relatively small number of neurons, the ganglionic nature of the nervous system, the simplicity of the neuro- muscular arrangement, and the repetitiveness of behavioural sequences all lend them- selves to a solution of this problem. As a result, an increasing number of investigators have been turning their attention to insects and especially to the large orthopterans. Recently, Ewing & Hoyle (1965) and Huber (1965) reported on muscle activity underlying sound production in crickets. The acoustic behaviour is well understood (Alexander, 1961) and in the genera Gryllus, Acheta and Gryllodes communication is mediated by three basic songs composed of three types of pulses. While working independently on this system at the University of Cologne (W.K.) and the University of Michigan (D.B.) using various Gryllus species, we found a number of basic differences between the muscle activity in our crickets and that reported by Ewing & Hoyle (1965) for Acheta domesticus. These two genera, Gryllus and Acheta, are so nearly identical that they are distinguished solely by differences in the male genitalia (Chopard, 1961). The present paper constitutes a survey of muscle activity patterns producing stridulation in four species of field crickets.
    [Show full text]
  • Chamber Music: an Unusual Helmholtz Resonator for Song Amplification in a Neotropical Bush-Cricket (Orthoptera, Tettigoniidae) Thorin Jonsson1,*, Benedict D
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 2900-2907 doi:10.1242/jeb.160234 RESEARCH ARTICLE Chamber music: an unusual Helmholtz resonator for song amplification in a Neotropical bush-cricket (Orthoptera, Tettigoniidae) Thorin Jonsson1,*, Benedict D. Chivers1, Kate Robson Brown2, Fabio A. Sarria-S1, Matthew Walker1 and Fernando Montealegre-Z1,* ABSTRACT often a morphological challenge owing to the power and size of their Animals use sound for communication, with high-amplitude signals sound production mechanisms (Bennet-Clark, 1998; Prestwich, being selected for attracting mates or deterring rivals. High 1994). Many animals therefore produce sounds by coupling the amplitudes are attained by employing primary resonators in sound- initial sound-producing structures to mechanical resonators that producing structures to amplify the signal (e.g. avian syrinx). Some increase the amplitude of the generated sound at and around their species actively exploit acoustic properties of natural structures to resonant frequencies (Fletcher, 2007). This also serves to increase enhance signal transmission by using these as secondary resonators the sound radiating area, which increases impedance matching (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal between the structure and the surrounding medium (Bennet-Clark, stridulation and often use specialised wing areas as primary 2001). Common examples of these kinds of primary resonators are resonators. Interestingly, Acanthacara acuta, a Neotropical bush- the avian syrinx (Fletcher and Tarnopolsky, 1999) or the cicada cricket, exhibits an unusual pronotal inflation, forming a chamber tymbal (Bennet-Clark, 1999). In addition to primary resonators, covering the wings. It has been suggested that such pronotal some animals have developed morphological or behavioural chambers enhance amplitude and tuning of the signal by adaptations that act as secondary resonators, further amplifying constituting a (secondary) Helmholtz resonator.
    [Show full text]
  • Pinyon Engraver Beetle Acoustics: Stridulation Apparatus, Sound Production and Behavioral Response to Vibroacoustic Treatments in Logs
    insects Article Pinyon Engraver Beetle Acoustics: Stridulation Apparatus, Sound Production and Behavioral Response to Vibroacoustic Treatments in Logs Ivan Lukic 1 , Carol L. Bedoya 2, Evan M. Hofstetter 3 and Richard W. Hofstetter 1,* 1 School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA; [email protected] 2 School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; [email protected] 3 BASIS, High School, Flagstaff, AZ 86001, USA; [email protected] * Correspondence: [email protected] Simple Summary: Acoustic technology is a potential tool to protect wood materials and live trees from colonization by bark beetles and other wood-infesting insects. Bark beetles such as the pinyon engraver beetle Ips confusus use chemical and acoustic cues to communicate and to locate potential mates in trees. In this study, we describe the structures and airborne sounds produced by the pinyon engraver beetle, and test the efficacy of vibroacoustic treatments for tree protection against this beetle. Only female beetles possessed sound producing structures, located on the back of the head and inside the thorax. We analyzed and described the airborne sounds, called chirps, produced by females when held by tweezers or placed on their back. We tested a wide variety of vibroacoustic treatments Citation: Lukic, I.; Bedoya, C.L.; played into logs but these sound treatments did not prevent male entry into logs and did not disrupt Hofstetter, E.M.; Hofstetter, R.W. female–male interactions, female tunneling behavior, reproduction or egg laying. We suggest further Pinyon Engraver Beetle Acoustics: studies if acoustic methods are to be utilized to control this bark beetle.
    [Show full text]
  • An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna
    © Copyright Australian Museum, 2005 Records of the Australian Museum (2005) Vol. 57: 375–446. ISSN 0067-1975 An Appraisal of the Higher Classification of Cicadas (Hemiptera: Cicadoidea) with Special Reference to the Australian Fauna M.S. MOULDS Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] ABSTRACT. The history of cicada family classification is reviewed and the current status of all previously proposed families and subfamilies summarized. All tribal rankings associated with the Australian fauna are similarly documented. A cladistic analysis of generic relationships has been used to test the validity of currently held views on family and subfamily groupings. The analysis has been based upon an exhaustive study of nymphal and adult morphology, including both external and internal adult structures, and the first comparative study of male and female internal reproductive systems is included. Only two families are justified, the Tettigarctidae and Cicadidae. The latter are here considered to comprise three subfamilies, the Cicadinae, Cicadettinae n.stat. (= Tibicininae auct.) and the Tettigadinae (encompassing the Tibicinini, Platypediidae and Tettigadidae). Of particular note is the transfer of Tibicina Amyot, the type genus of the subfamily Tibicininae, to the subfamily Tettigadinae. The subfamily Plautillinae (containing only the genus Plautilla) is now placed at tribal rank within the Cicadinae. The subtribe Ydiellaria is raised to tribal rank. The American genus Magicicada Davis, previously of the tribe Tibicinini, now falls within the Taphurini. Three new tribes are recognized within the Australian fauna, the Tamasini n.tribe to accommodate Tamasa Distant and Parnkalla Distant, Jassopsaltriini n.tribe to accommodate Jassopsaltria Ashton and Burbungini n.tribe to accommodate Burbunga Distant.
    [Show full text]