Diptera) Fauna
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Moths Light a Way? by John Pickering, Tori Staples and Rebecca Walcott
SOUTHERN LEPIDOPTERISTS NEWS VOLUME 38 NO4. (2016), PG. 331 SAVE ALL SPECIES – MOTHS LIGHT A WAY? BY JOHN PICKERING, TORI STAPLES AND REBECCA WALCOTT Abstract -- What would it take to save all species from snakes, and stinging insects, they pose no health risk. extinction? A new initiative, Save all species, plans to Moths are an exceedingly species-rich group, for which answer this question and provide the tools we need to do the diversity at a terrestrial site will typically exceed any so by 2050. Here we consider the merits and problems other taxon except for beetles. Because moth larvae are associated with inventorying moths to help decide which restricted in their diet to specific host taxa, differences in terrestrial areas to protect. We compare the the assemblages of resident moth species could reflect scientifically-described moth fauna of the British Isles differences across sites in plants and other hosts. If which, with 2,441 species, is taxonomically complete, that’s true, we may be able to use moth inventories as with 11,806 described species from North America north efficient proxies to compare surrounding plant of Mexico, the fauna of which is not fully described. As communities. a percentage of the described moth fauna, there are fewer “macro” moths (Geometroidea, Drepanoidea, Inventorying moths presents challenges, notably, Noctuoidea, Bombycoidea, Lasiocampidae) in the sampling smaller species, describing thousands of British Isles (34.9%) than those known for the United species new to science, and identifying specimens States and Canada (46.1%). We present data on 1,254 accurately. Our experience is that we can identify 99% species for an intensively-studied site in Clarke County, of moths from digital images to species, species-groups, Georgia and consider whether species in the British Isles which contain species of similar appearance, or are generally smaller than ones in Georgia. -
R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 the Diptera of Lundy Have Been Poorly Studied in the Past
Swallow 3 Spotted Flytcatcher 28 *Jackdaw I Pied Flycatcher 5 Blue Tit I Dunnock 2 Wren 2 Meadow Pipit 10 Song Thrush 7 Pied Wagtail 4 Redwing 4 Woodchat Shrike 1 Blackbird 60 Red-backed Shrike 1 Stonechat 2 Starling 15 Redstart 7 Greenfinch 5 Black Redstart I Goldfinch 1 Robin I9 Linnet 8 Grasshopper Warbler 2 Chaffinch 47 Reed Warbler 1 House Sparrow 16 Sedge Warbler 14 *Jackdaw is new to the Lundy ringing list. RECOVERIES OF RINGED BIRDS Guillemot GM I9384 ringed 5.6.67 adult found dead Eastbourne 4.12.76. Guillemot GP 95566 ringed 29.6.73 pullus found dead Woolacombe, Devon 8.6.77 Starling XA 92903 ringed 20.8.76 found dead Werl, West Holtun, West Germany 7.10.77 Willow Warbler 836473 ringed 14.4.77 controlled Portland, Dorset 19.8.77 Linnet KC09559 ringed 20.9.76 controlled St Agnes, Scilly 20.4.77 RINGED STRANGERS ON LUNDY Manx Shearwater F.S 92490 ringed 4.9.74 pullus Skokholm, dead Lundy s. Light 13.5.77 Blackbird 3250.062 ringed 8.9.75 FG Eksel, Belgium, dead Lundy 16.1.77 Willow Warbler 993.086 ringed 19.4.76 adult Calf of Man controlled Lundy 6.4.77 THE DIPTERA (TWO-WINGED FLffiS) OF LUNDY ISLAND R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 The Diptera of Lundy have been poorly studied in the past. Therefore, it is hoped that the production of an annotated checklist, giving an indication of the habits and general distribution of the species recorded will encourage other entomologists to take an interest in the Diptera of Lundy. -
The Biology of Casmara Subagronoma (Lepidoptera
insects Article The Biology of Casmara subagronoma (Lepidoptera: Oecophoridae), a Stem-Boring Moth of Rhodomyrtus tomentosa (Myrtaceae): Descriptions of the Previously Unknown Adult Female and Immature Stages, and Its Potential as a Biological Control Candidate Susan A. Wineriter-Wright 1, Melissa C. Smith 1,* , Mark A. Metz 2 , Jeffrey R. Makinson 3 , Bradley T. Brown 3, Matthew F. Purcell 3, Kane L. Barr 4 and Paul D. Pratt 5 1 USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL 33314, USA; [email protected] 2 USDA-ARS Systematic Entomology Lab, Beltsville, MD 20013-7012, USA; [email protected] 3 USDA-ARS Australian Biological Control Laboratory, CSIRO Health and Biosecurity, Dutton Park QLD 4102, Australia; jeff[email protected] (J.R.M.); [email protected] (B.T.B.); [email protected] (M.F.P.) 4 USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; [email protected] 5 USDA-ARS, Western Regional Research Center, Invasive Species and Pollinator Health Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-954-475-6549 Received: 27 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Simple Summary: Rhodomyrtus tomentosa is a perennial woody shrub throughout Southeast Asia. Due to its prolific flower and fruit production, it was introduced into subtropical areas such as Florida and Hawai’i, where it is now naturalized and invasive. In an effort to find sustainable means to control R. tomentosa, a large-scale survey was mounted for biological control organisms. -
Big Creek Lepidoptera Checklist
Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae -
Phasenverschobene Häufigkeit Der Raupenfliege Tachina Grossa
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2006 Band/Volume: 0027 Autor(en)/Author(s): Reichholf Josef H. Artikel/Article: Phasenverschobene Häufigkeit der Raupenfliege Tachina grossa (LINNAEUS, 1758) und des Eichenspinners Lasiocampa quercus (LINNAEUS, 1758) im Wald an der Isar südlich von München (Diptera: Tachinidae / Lepidoptera: Lasiocampidae). 412-415 © Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Phasenverschobene Häufigkeit der Raupenfliege Tachina grossa (LINNAEUS, 1758) und des Eichenspinners Lasiocampa quercus (LINNAEUS, 1758) im Wald an der Isar südlich von München (Diptera: Tachinidae / Lepidoptera: Lasiocampidae) Josef H. Reichholf Abstract Phase shifted abundance of the Echinomyid fly Tachina grossa (LINNAEUS, 1758) and its prey, the Oak Eggar Moth Lasiocampa quercus (LINNAEUS, 1758)in the woodland south of Munich. - Tachina grossa, the largest of the European Tachinid species, occurred in the summers of 2003 and 2004 in the pine forest adjacent to the river Isar south of Munich along a regularly counted line transect of 400 metres length. A comparison with the abundance of the Oak Eggar moth Lasiocampa quercus (LINNAEUS, 1758) along the same transect showed that the Tachinid “followed” with delay on a period of elevated abundance of the moth (cf. fig. 1) and vanished when levels of the moth’s abundance lowered again in 2005 and 2006. The parasitic fly’s flight period is also shifted by roughly one month compared to the Oak Eggar (cf. fig. 2). Though widespread, the large Tachinid fly is not really abundant and fluctuates in places and time. Zusammenfassung Tachina grossa (LINNAEUS, 1758), die größte europäische Raupenfliege, kam in den Sommern von 2003 und 2004 entlang der 400 m langen Linientransekte vor, an denen im Kiefernwald an der Isar südlich von München regelmäßig Zählungen von Schmetterlingen vorgenommen wurden. -
Acoustic Communication in the Nocturnal Lepidoptera
Chapter 6 Acoustic Communication in the Nocturnal Lepidoptera Michael D. Greenfield Abstract Pair formation in moths typically involves pheromones, but some pyra- loid and noctuoid species use sound in mating communication. The signals are generally ultrasound, broadcast by males, and function in courtship. Long-range advertisement songs also occur which exhibit high convergence with commu- nication in other acoustic species such as orthopterans and anurans. Tympanal hearing with sensitivity to ultrasound in the context of bat avoidance behavior is widespread in the Lepidoptera, and phylogenetic inference indicates that such perception preceded the evolution of song. This sequence suggests that male song originated via the sensory bias mechanism, but the trajectory by which ances- tral defensive behavior in females—negative responses to bat echolocation sig- nals—may have evolved toward positive responses to male song remains unclear. Analyses of various species offer some insight to this improbable transition, and to the general process by which signals may evolve via the sensory bias mechanism. 6.1 Introduction The acoustic world of Lepidoptera remained for humans largely unknown, and this for good reason: It takes place mostly in the middle- to high-ultrasound fre- quency range, well beyond our sensitivity range. Thus, the discovery and detailed study of acoustically communicating moths came about only with the use of electronic instruments sensitive to these sound frequencies. Such equipment was invented following the 1930s, and instruments that could be readily applied in the field were only available since the 1980s. But the application of such equipment M. D. Greenfield (*) Institut de recherche sur la biologie de l’insecte (IRBI), CNRS UMR 7261, Parc de Grandmont, Université François Rabelais de Tours, 37200 Tours, France e-mail: [email protected] B. -
Elm Borer Eastern Tent Caterpillar
Pests of Trees and Shrubs Eastern tent caterpillar Elm borer Malacosoma americanum Order Lepidoptera, Family Lasiocampidae; tent caterpillars and lappet moths Native pest Host plants: Apple, crabapple, pear, plum, and wild cherry are preferred, but a wide variety of other forest, fruit and shade trees are hosts. Description: Adult moths are light brown, 25 mm long, with two diagonal white stripes across the forewings. Wingspan is 37–50 mm. Larvae can grow to 50 mm or more in length. They have black heads, a white stripe down the length of the back and yellow lateral stripes with blue spots. Life history: Overwintered eggs hatch as host tree buds begin to unfold in the spring. Larvae are gregarious and construct a communal web or tent, which grows as they develop and from which they emerge to feed. There is one generation a year. Early season defoliation caused by Eastern tent caterpillar. (84) Overwintering: As eggs in masses that surround twigs. Photo: Cliff Sadof Damage symptoms: Silken webs in tree forks may be unsightly. When infestations are sufficiently severe, trees can be completely defoliated. Monitoring: Eggs hatch when red maple blooms in the first week of April (Herms). Look for larval silken tents on preferred hosts in early April. Also look on preferred hosts in the dormant season for approximately 18 mm long, black egg masses. Physical control: In the dormant season, prune and destroy egg masses. Destroy webs and their contents as soon as they appear. Chemical control: Use Bacillus thuringiensis var. kurstaki when trees are flowering to protect pollinating bees. -
Malacosoma Americanum
EPPO quarantine pest Data Sheets on Quarantine Pests Malacosoma americanum IDENTITY Name: Malacosoma americanum Fabricius Taxonomic position: Insecta: Lepidoptera: Lasiocampidae Common names: Eastern tent caterpillar, orchard tent caterpillar, apple tent caterpillar (English) Livrée d'Amerique (French) Amerikanischer Ringelspinner (German) Bayer computer code: MALAAM EPPO A1 list: No. 276 HOST M. americanum is an oligophagous species, whose preferred hosts are wild cherries (Prunus serotina, P. pennsylvanica, P. virginiana), wild apples (Malus coronaria) and other Rosaceae. During outbreaks, the caterpillars also feed on a large variety of hosts, e.g. Acer rubrum, A. saccharum, Alnus spp., Amelanchier spp., Berberis vulgaris, Betula alleghaniensis, B. papyrifera, Carya illinoinensis, Corylus spp., Crataegus spp., Fagus grandifolia, Fraxinus americana, F. excelsior, Hamamelis spp., Liquidambar styraciflua, Nyssa sylvatica, Populus balsamifera, P. grandidentata, Quercus alba, Q. rubra, Rosa spp., Salix spp., Sorbus spp., Tilia americana and Ulmus thomasii. The following fruit trees are also recorded hosts: apples (Malus pumila), peaches (Prunus persica), plums (P. domestica), but not cherries (P. avium). GEOGRAPHICAL DISTRIBUTION M. americanum is common and widespread in the eastem part of the United States as far west as the Rocky Mountains, and in southern Canada. In the west, it is replaced by M. californicum and other species (see below). EPPO region: Absent. North America: Canada (New Brunswick, Nova Scotia, Ontario, Quebec), USA (Arkansas, Connecticut, Florida, Georgia, Illinois, Kentucky, Maine, Maryland, Massachusetts, Michigan, New Hampshire, New Jersey, New York, Ohio, Rhode Island, West Virginia). EU: Absent. It may be noted that related species, with similar host ranges, occur in other parts of North America: M. californicum pluviale, the western tent caterpillar, on many broad- leaved hosts (e.g. -
Huchard Et Al., 2006 1.Pdf
Acetylcholinesterase genes within the Diptera: takeover and loss in true flies Elise Huchard, Michel Martinez, Haoues Alout, Emmanuel Douzery, Georges Lutfalla, Arnaud Berthomieu, Claire Berticat, Michel Raymond, Mylene Weill To cite this version: Elise Huchard, Michel Martinez, Haoues Alout, Emmanuel Douzery, Georges Lutfalla, et al.. Acetyl- cholinesterase genes within the Diptera: takeover and loss in true flies. Proceedings of the Royal Society B: Biological Sciences, Royal Society, The, 2006, 273 (1601), pp.2595-2604. 10.1098/rspb.2006.3621. hal-01945529 HAL Id: hal-01945529 https://hal.archives-ouvertes.fr/hal-01945529 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proc. R. Soc. B (2006) 273, 2595–2604 doi:10.1098/rspb.2006.3621 Published online 18 July 2006 Acetylcholinesterase genes within the Diptera: takeover and loss in true flies Elise Huchard1, Michel Martinez2, Haoues Alout1, Emmanuel J. P. Douzery1, Georges Lutfalla3, Arnaud Berthomieu1, Claire Berticat1, Michel Raymond1,* and Myle`ne Weill1 1Institut des Sciences -
KEYS Tú the ETHIOPIAJ.'F TACHINIDAE-III MACQUARTIINAE by the Late F
313 KEYS Tú THE ETHIOPIAJ.'f TACHINIDAE-III MACQUARTIINAE BY The late F. 1. VAN ENIDEN Commonwealth Institute of Entomology (Accepted 12th May, 1959) (With 11 figures in the text) CüNTENTS , Page Introduction 313 Abhreviations 314 Deñnition of the subfamily Macquartiinae 315 Biology of tha Ethiopian Macquartiinae 315 Key ta the tribes of Ethiopian Macquartiinae 317 Key ta tbe sub-tribes of Echinornyini 320 l. :Macqaartiini 320 2. Wagneriini 332 3. Campyiochaetini 350 4. Helocerini 353 5. Nemoraeini 358 6. Acemyini 368 7. Gennariini 371 8. Thelairini 372 9. Minthoini 377 10. Leskiini 384 11. Echinornyini 402 a. Ernestiina 402 b. Linnaernyina. 407 c. Echinomyina 467 References 486 [The present report was completed by DI' van Ernden with the exception of Olle descrip tion, of the figures (to which, however, he had made reference in the appropriate places) and of the section dealing with the biology of the group. The biological data have kindly been summarised by DI' S. V. Peris, of the Instituto de Edafología, Madrid, and the bibliographical references at the end of the paper were provided to support this parto It had been van Emden's intention to inelude a paragraph of thanks in the íntro• duction. This was not completed, but acknowledgments of help received are given at varíous places in the text, and on his behalí thanks are bere tendered to the authoritie" of the British Museum for the facilities which they have so kindly afforded. The present annotator is responsible fol' the deseription of J.l1arshallornyia and its single species, for the text figures and for following the original orthography of the generie names Acemya, Linnaemya and Echinornya. -
Phylogeny and Evolution of Lepidoptera
EN62CH15-Mitter ARI 5 November 2016 12:1 I Review in Advance first posted online V E W E on November 16, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Phylogeny and Evolution of Lepidoptera Charles Mitter,1,∗ Donald R. Davis,2 and Michael P. Cummings3 1Department of Entomology, University of Maryland, College Park, Maryland 20742; email: [email protected] 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 3Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742 Annu. Rev. Entomol. 2017. 62:265–83 Keywords Annu. Rev. Entomol. 2017.62. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at Hexapoda, insect, systematics, classification, butterfly, moth, molecular ento.annualreviews.org systematics This article’s doi: Access provided by University of Maryland - College Park on 11/20/16. For personal use only. 10.1146/annurev-ento-031616-035125 Abstract Copyright c 2017 by Annual Reviews. Until recently, deep-level phylogeny in Lepidoptera, the largest single ra- All rights reserved diation of plant-feeding insects, was very poorly understood. Over the past ∗ Corresponding author two decades, building on a preceding era of morphological cladistic stud- ies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yield- ing to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution. -
Diptera) of the Czech Republic
© Entomologica Fennica. 30 March 2009 Annotated host catalogue for the Tachinidae (Diptera) of the Czech Republic Jaromir Vafihara*, Hans-Peter Tschorsnig, Benno Herting’r, Petr Mfickstein & Veronika Michalkova J P. & V. Vanhara, ., Tschorsnig, H.-P., Herting, B., Miickstein, Michalkova, 2009: Annotated host catalogue for the Tachinidae (Diptera) of the Czech Re- public. — Entomol. Fennica 20: 22—48. An annotated host catalogue is given for the Tachinidae ofthe Czech Republic. It comprises 149 of476 tachinid species which are currently known from this coun- try (included the two new records cited below). 195 hosts are listed. The first host records ofTachinidae date back to the second halfofthe 19th century. The bibli- ography for the host records consists of 1 16 papers of 55 researchers. Several re- cords of hitherto unpublished material are included. Phryxe setifacies and Anthomyiopsis plagioderae are first records for the Czech Republic. J. Vanhara (*corresponding author), Masaryk University, Faculty ofScience, Kotlarska 2, CZ—6I I 3 7 Brno, Czech Republic, [email protected] H.—P. Tschorsnig, Staatliches Museumflir Naturkunde, Rosenstein I, D— 70 191 Stuttgart, Germany, tschorsnig.smns@naturkundemuseum—bw.de P. Muckstein Administration of the Protected Landscape Area Zd’drske' vrchy, Brnenska 39, CZ—591 01 Zd’dr nad Sazavou, Czech Republic, muchstein @email.cz V. Michalkova, Masaryk University, Faculty ofScience, Kotlarska 2, CZ—6I I 3 7 Brno, Czech Republic, [email protected] Received 22 August 200 7, accepted 21 January 2008 1. Introduction The tachinid species are listed in their actual valid nomenclature; probable misidentifications Tachinidae are a very large and important dipter- are — if possible — tentatively corrected, but the an family of (mainly) insect parasitoids.