Logical Methods in Computer Science Vol. 13(4:6)2017, pp. 1–21 Submitted Sep. 08, 2016 https://lmcs.episciences.org/ Published Nov. 06, 2017 BOUNDED DEGREE AND PLANAR SPECTRA ANUJ DAWAR AND ERYK KOPCZYNSKI´ Department of Computer Science and Technology, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FD, England e-mail address:
[email protected] Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland e-mail address:
[email protected] Abstract. The finite spectrum of a first-order sentence is the set of positive integers that are the sizes of its models. The class of finite spectra is known to be the same as the complexity class NE. We consider the spectra obtained by limiting models to be either planar (in the graph-theoretic sense) or by bounding the degree of elements. We show that the class of such spectra is still surprisingly rich by establishing that significant fragments of NE are included among them. At the same time, we establish non-trivial upper bounds showing that not all sets in NE are obtained as planar or bounded-degree spectra. 1. Introduction The spectrum of a sentence φ of some logic, denoted spec(φ), is the set of positive integers n such that φ has a model of cardinality n. In this paper we are solely concerned with first- order logic and we use the word spectrum to mean a set of integers that is is the spectrum of some first-order sentence. Scholz in [Sch52] posed the question of characterizing those sets of integers which are spectra.