Lunar Meteoritic Gardening Rate Derived from in Situ LADEE/LDEX Measurements, Geophys

Total Page:16

File Type:pdf, Size:1020Kb

Lunar Meteoritic Gardening Rate Derived from in Situ LADEE/LDEX Measurements, Geophys Geophysical Research Letters RESEARCH LETTER Lunar meteoritic gardening rate derived from in situ 10.1002/2016GL069148 LADEE/LDEX measurements Key Points: 1 2,3,4 • LDEX directly samples the material Jamey R. Szalay and Mihály Horányi reblanketing the lunar surface 1 2 •Thelunardustdensityhasanaverage Southwest Research Institute, San Antonio, Texas, USA, Laboratory for Atmospheric and Space Physics, University of scale height of approximately 200 km Colorado Boulder, Boulder, Colorado, USA, 3Department of Physics, University of Colorado Boulder, Boulder, Colorado, • 40 μm/Myr of lunar soil is USA, 4Institute for Modeling Plasma, Atmospheres, and Cosmic Dust, Boulder, Colorado, USA redistributed near the equatorial plane by meteoritic bombardment, primarily driven by the apex sporadic source Abstract The Lunar Atmosphere and Dust Environment Explorer (LADEE) orbited the Moon for approximately 6 months, taking data with the Lunar Dust Experiment (LDEX). LDEX was uniquely equipped to characterize the current rate of lunar impact gardening as it measured the very particles Correspondence to: J. R. Szalay, taking part in this process. By deriving an average lunar dust density distribution, we calculate the rate [email protected] at which exospheric dust rains back down onto the lunar surface. Near the equatorial plane, we find that approximately 40 μm/Myr of lunar regolith, with a cumulative size distribution index of 2.7, is redistributed Citation: due to meteoritic bombardment, a process which occurs predominantly on the lunar apex hemisphere. Szalay, J. R., and M. Horányi (2016), Lunar meteoritic gardening rate derived from in situ LADEE/LDEX measurements, Geophys. Res. Lett., 43, doi:10.1002/2016GL069148. 1. Introduction The surfaces of airless bodies are continually bombarded by micrometeoroids, which eject and redistribute Received 13 APR 2016 the surface material in a process called impact gardening [Gault et al., 1974; Arnold, 1975; Morris, 1978]. Impact Accepted 9 MAY 2016 gardening is ubiquitous throughout the solar system and plays a critical role in how surfaces are modified Accepted article online 16 MAY 2016 and evolve over time. Without any appreciable atmosphere, airless bodies are exposed to their ambient plasma environments and undergo space weathering processes [Pieters et al., 2000; Taylor et al., 2001], with an efficacy that depends on the competing impact gardening rate at which the lunar material is resurfaced. Impact gardening plays a role in the evolution of volatiles trapped in permanently shadowed regions, mixing and potentially covering them over time [Hodges, 2002; Hurley et al., 2012]. This process is also expected to be relevant at Mercury [Morgan et al.,1988],wheremeteoroidimpactspeedsandtheirsubsequentimpact ejecta generation can be considerably larger than the Moon [Marchi et al.,2005].Lunarswirls,peculiaralbedo markings on the surface of the Moon, represent an active area of research with multiple competing pro- posed source mechanisms [Kramer et al., 2011; Garrick-Bethell et al., 2011; Glotch et al., 2015; Syal and Schultz, 2015; Poppe et al., 2016]. Any explanation for such albedo markings must be consistent with known impact gardening/resurfacing rates. Scientific instruments or solar panels deployed on the lunar surface are subject to the accumulation of dust from meteoritic bombardment, degrading their performance over time. The Apollo and Lunokhod retrore- flectors placed on the surface of the Moon have degraded considerably. The most likely explanation for this degradation is the accumulation of dust partially covering the reflectors, reducing their ability to reflect [Murphy et al., 2010, 2014]. Data from the Apollo Dust Detector Experiments were used to estimate solar cell degradation as well as buildup of dust on vertically facing solar cells by measuring their output as a func- tion of time [Hollick and O’Brien,2013].Whilefutureinstrumentshavebeenproposedtobetterunderstand these fluxes [Li et al., 2015], currently, quantitative estimates for the buildup of impact ejecta on such surfaces remain relatively unconstrained. ©2016. The Authors. The Lunar Dust Experiment (LDEX) [Horányi and et al., 2014] was an impact ionization dust detector aboard This is an open access article under the the Lunar Atmosphere and Dust Environment Explorer (LADEE) [Elphic et al., 2014]. LDEX recorded average terms of the Creative Commons Attribution-NonCommercial-NoDerivs impact rates of ∼1 hit/min of particles during the lower altitude science phase, with radii of a ≳0.3 μm. Using License, which permits use and the data taken during approximately 6 months of operation, LDEX was able to characterize the dust density distribution in any medium, provided distribution of the lunar dust cloud as a function of time, altitude, and local time (LT). LDEX discovered a the original work is properly cited, the use is non-commercial and no permanently present, asymmetric dust cloud [Horányi et al., 2015]. The grains detected by LDEX return to the modifications or adaptations are made. surface on timescales of a few minutes and are the very same grains which reblanket the lunar surface. SZALAY AND HORÁNYI LUNAR METEORITIC GARDENING RATE 1 Geophysical Research Letters 10.1002/2016GL069148 Figure 1. Lunar dust density for each local time denoted by the colored dots and error bars. The diagram in the top corner shows the local time range for each color. The grey curve with error bars in the bottom panel shows the average over all local times. The dashed line shows the best exponential fit to the average in the bottom panel, replicated in each of the above panels. Each panel covers the same range of arbitrary linear units. The lunar dust density distribution in the equatorial plane was found to be primarily generated by three known sporadic sources: the helion (HE), apex (AP), and antihelion (AH) [Szalay and Horányi, 2015a], with a minor contribution potentially coming from the antiapex (AA) source [Herschel, 1911; Janches et al., 2000; Campbell-Brown, 2008]. The ejecta cloud was observed to be sensitive to small changes in impactor fluxes and velocities. During several of the known meteoroid showers, LDEX observed temporary enhancements of the lunar dust cloud, localized to the hemisphere exposed to the incident meteoroid shower flux [Szalay and Horányi, 2016]. 2. Determining the Average Lunar Dust Density Profile To determine the impact gardening rate, an average vertical structure of the dust density profile must be derived. First, we select data taken during the months of January to April 2014, as this is the time period with minimal meteoroid shower activity [Szalay and Horányi, 2016] and most indicative of the cloud’s average behavior. We calculate the density as a function of altitude for local time (LT) bins of 1.5 h for all available local times. Normalizing each density to the 6 LT profile, we determine an average dust density profile as a function of altitude (Figure 1). For the purposes of this study, an exponential fit is found to be in good agreement, with −h∕" the form n(h)=n0e , where h is the altitude in kilometers above the lunar surface, n0 is the density at h=0, and =200 km is the scale height. The altitude distribution of the dust is then f(h)= 1 e−h∕". " " As a first approximation, f(h) was calculated by averaging all observations over the local times LADEE visited [Horányi et al., 2015, Methods]. Due to LADEE’s orbital characteristics, each sampled local time covers a dif- ferent distribution of altitudes. Here we present an improved method to determine the distribution function by removing the correlation between local time and altitude. Assuming all LDEX detections are for particles at their vertical turning points [Horányi et al.,2015],wecancalculatethevelocityparticleswillreimpactthe surface from any altitude from energy conservation. With the approximation that all grains undergo purely vertical motion, the corresponding one-dimensional velocity distribution function at the surface is R∕" dh 2Rv − 2 f(v)=f (h(v)) = e (ve∕v) −1 , (1) dv 2 2 2 "ve 1 −(v∕ve) ( ) R where ve =2.4 km/s is the lunar escape speed, R=1737 km is the radius of the Moon, and h(v)= 2 from (ve∕v) −1 energy conservation. This distribution function differs from previous work [Horányi et al., 2015, Methods] due to the additional analysis of the local time dependence (Figure 2). SZALAY AND HORÁNYI LUNAR METEORITIC GARDENING RATE 2 Geophysical Research Letters 10.1002/2016GL069148 As mentioned, we restrict our analysis to LDEX data taken during January to April 2014. However, during the commissioning phase of LADEE’s orbit, the spacecraft reached altitudes up to ∼250 km until late November 2013. While the LDEX data dur- ing late 2013 are more variable due to increased meteoroid stream activity, the exponential fit derived here is consistent with the high-altitude data profile observed by LDEX, reinforcing our methodology. The differential mass distribution of lunar ejecta measured by LDEX remained inde- pendent of the altitude, and had the form 1 f(m)∝m−( +#), where # =0.9; hence, the differential size distribution is f a f m Figure 2. The velocity distribution function from equation (1) (black) ( )∝ ( ) dm Ca−(1+3#), with the normalization along with the previously derived distribution (grey) from Horányi da = et al. [2015, Methods]. The vertical dashed line indicates the velocity −3# −3# (C =3)#∕(a0 −amax). LDEX measured parti- to reach the highest altitude visited by LDEX of 250 km. For velocities cles above a threshold size of ath ≈0.3 μm. ≳840 m/s, the distribution function derived in this work is an extrapolation. The average lunar dust density profile in Figure 1 shows the dust density for parti- cles with radii a ≥ ath. Since the measured dust distribution is a simple power law for a > ath [Horányi et al., 2015], we assume the power law to remain valid to a critical value a0≤ ath [Kolmogorov, 1941]. The dust density −3# for particles with radii greater than a is given by n(h, a)=n(h)(a∕ath) where n(h) is fit to the LDEX-derived densities for a≥ath and is assumed to remain valid for all sizes with a≥a0.
Recommended publications
  • A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Om on Lindsay Kathleen Anderson
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 A Comparative Analysis Of The Geology Tools Used During The Apollo Lunar Program And Their Suitability For Future Missions To The oM on Lindsay Kathleen Anderson Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Anderson, Lindsay Kathleen, "A Comparative Analysis Of The Geology Tools Used During The Apollo Lunar Program And Their Suitability For Future Missions To The oonM " (2016). Theses and Dissertations. 1860. https://commons.und.edu/theses/1860 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. A COMPARATIVE ANALYSIS OF THE GEOLOGY TOOLS USED DURING THE APOLLO LUNAR PROGRAM AND THEIR SUITABILITY FOR FUTURE MISSIONS TO THE MOON by Lindsay Kathleen Anderson Bachelor of Science, University of North Dakota, 2009 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota May 2016 Copyright 2016 Lindsay Anderson ii iii PERMISSION Title A Comparative Analysis of the Geology Tools Used During the Apollo Lunar Program and Their Suitability for Future Missions to the Moon Department Space Studies Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection.
    [Show full text]
  • Appendix a Apollo 15: “The Problem We Brought Back from the Moon”
    Appendix A Apollo 15: “The Problem We Brought Back From the Moon” Postal Covers Carried on Apollo 151 Among the best known collectables from the Apollo Era are the covers flown onboard the Apollo 15 mission in 1971, mainly because of what the mission’s Lunar Module Pilot, Jim Irwin, called “the problem we brought back from the Moon.” [1] The crew of Apollo 15 carried out one of the most complete scientific explorations of the Moon and accomplished several firsts, including the first lunar roving vehicle that was operated on the Moon to extend the range of exploration. Some 81 kilograms (180 pounds) of lunar surface samples were returned for anal- ysis, and a battery of very productive lunar surface and orbital experiments were conducted, including the first EVA in deep space. [2] Yet the Apollo 15 crew are best remembered for carrying envelopes to the Moon, and the mission is remem- bered for the “great postal caper.” [3] As noted in Chapter 7, Apollo 15 was not the first mission to carry covers. Dozens were carried on each flight from Apollo 11 onwards (see Table 1 for the complete list) and, as Apollo 15 Commander Dave Scott recalled in his book, the whole business had probably been building since Mercury, through Gemini and into Apollo. [4] People had a fascination with objects that had been carried into space, and that became more and more popular – and valuable – as the programs progressed. Right from the start of the Mercury program, each astronaut had been allowed to carry a certain number of personal items onboard, with NASA’s permission, in 1 A first version of this material was issued as Apollo 15 Cover Scandal in Orbit No.
    [Show full text]
  • Celebrate Apollo
    National Aeronautics and Space Administration Celebrate Apollo Exploring The Moon, Discovering Earth “…We go into space because whatever mankind must undertake, free men must fully share. … I believe that this nation should commit itself to achieving the goal before this decade is out, of landing a man on the moon and returning him safely to Earth. No single space project in this period will be more exciting, or more impressive to mankind, or more important for the long-range exploration of space; and none will be so difficult or expensive to accomplish …” President John F. Kennedy May 25, 1961 Celebrate Apollo Exploring The Moon, Discovering Earth Less than five months into his new administration, on May 25, 1961, President John F. Kennedy, announced the dramatic and ambitious goal of sending an American safely to the moon before the end of the decade. Coming just three weeks after Mercury astronaut Alan Shepard became the first American in space, Kennedy’s bold challenge that historic spring day set the nation on a journey unparalleled in human history. Just eight years later, on July 20, 1969, Apollo 11 commander Neil Armstrong stepped out of the lunar module, taking “one small step” in the Sea of Tranquility, thus achieving “one giant leap for mankind,” and demonstrating to the world that the collective will of the nation was strong enough to overcome any obstacle. It was an achievement that would be repeated five other times between 1969 and 1972. By the time the Apollo 17 mission ended, 12 astronauts had explored the surface of the moon, and the collective contributions of hundreds of thousands of engineers, scientists, astronauts and employees of NASA served to inspire our nation and the world.
    [Show full text]
  • The Lunar Dust-Plasma Environment Is Crucial
    TheThe LunarLunar DustDust --PlasmaPlasma EnvironmentEnvironment Timothy J. Stubbs 1,2 , William M. Farrell 2, Jasper S. Halekas 3, Michael R. Collier 2, Richard R. Vondrak 2, & Gregory T. Delory 3 [email protected] Lunar X-ray Observatory(LXO)/ Magnetosheath Explorer (MagEX) meeting, Hilton Garden Inn, October 25, 2007. 1 University of Maryland, Baltimore County 2 NASA Goddard Space Flight Center 3 University of California, Berkeley TheThe ApolloApollo AstronautAstronaut ExperienceExperience ofof thethe LunarLunar DustDust --PlasmaPlasma EnvironmentEnvironment “… one of the most aggravating, restricting facets of lunar surface exploration is the dust and its adherence to everything no matter what kind of material, whether it be skin, suit material, metal, no matter what it be and it’s restrictive friction-like action to everything it gets on. ” Eugene Cernan, Commander Apollo 17. EvidenceEvidence forfor DustDust AboveAbove thethe LunarLunar SurfaceSurface Horizon glow from forward scattered sunlight • Dust grains with radius of 5 – 6 m at about 10 to 30 cm from the surface, where electrostatic and gravitational forces balance. • Horizon glow ~10 7 too bright to be explained by micro-meteoroid- generated ejecta [Zook et al., 1995]. Composite image of morning and evening of local western horizon [Criswell, 1973]. DustDust ObservedObserved atat HighHigh AltitudesAltitudes fromfrom OrbitOrbit Schematic of situation consistent with Apollo 17 observations [McCoy, 1976]. Lunar dust at high altitudes (up to ~100 km). 0.1 m-scale dust present Gene Cernan sketches sporadically (~minutes). [McCoy and Criswell, 1974]. InIn --SituSitu EvidenceEvidence forfor DustDust TransportTransport Terminators Berg et al. [1976] Apollo 17 Lunar Ejecta and Meteorites (LEAM) experiment. PossiblePossible DustyDusty HorizonHorizon GlowGlow seenseen byby ClementineClementine StarStar Tracker?Tracker? Above: image of possible horizon glow above the lunar surface.
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]
  • Mercury Friday, February 23
    ASTRONOMY 161 Introduction to Solar System Astronomy Class 18 Mercury Friday, February 23 Mercury: Basic characteristics Mass = 3.302×1023 kg (0.055 Earth) Radius = 2,440 km (0.383 Earth) Density = 5,427 kg/m³ Sidereal rotation period = 58.6462 d Albedo = 0.11 (Earth = 0.39) Average distance from Sun = 0.387 A.U. Mercury: Key Concepts (1) Mercury has a 3-to-2 spin-orbit coupling (not synchronous rotation). (2) Mercury has no permanent atmosphere because it is too hot. (3) Like the Moon, Mercury has cratered highlands and smooth plains. (4) Mercury has an extremely large iron-rich core. (1) Mercury has a 3-to-2 spin-orbit coupling (not synchronous rotation). Mercury is hard to observe from the Earth (because it is so close to the Sun). Its rotation speed can be found from Doppler shift of radar signals. Mercury’s unusual orbit Orbital period = 87.969 days Rotation period = 58.646 days = (2/3) x 87.969 days Mercury is NOT in synchronous rotation (1 rotation per orbit). Instead, it has 3-to-2 spin-orbit coupling (3 rotations for 2 orbits). Synchronous rotation (WRONG!) 3-to-2 spin-orbit coupling (RIGHT!) Time between one noon and the next is 176 days. Sun is above the horizon for 88 days at the time. Daytime temperatures reach as high as: 700 Kelvin (800 degrees F). Nighttime temperatures drops as low as: 100 Kelvin (-270 degrees F). (2) Mercury has no permanent atmosphere because it is too hot (and has low escape speed). Temperature is a measure of the 3kT v = random speed of m atoms (or v typical speed of atom molecules).
    [Show full text]
  • Mariner 10 Observations of Field-Aligned Currents at Mercury
    Planet. Space Sci., Vol. 45, No. 1, pp. 133-141, 1997 Pergamon #I? 1997 Published bv Elsevier Science Ltd P&ted in Great Brit& All rights reserved 0032-0633/97 $17.00+0.00 PII: S0032-0633(96)00104-3 Mariner 10 observations of field-aligned currents at Mercury J. A. Slavin,’ J. C. J. Owen,’ J. E. P. Connerney’ and S. P. Christon ‘Laboratory for Extraterrestrial Physics, NASA/GSFC, Greenbelt, MD 20771, U.S.A. ‘Astronomy Unit, Queen Mary and Westfield College, London, U.K. 3Department of Physics, University of Maryland, College Park, MD 20742, U.S.A. Received 5 October 1995; revised 11 April 1996; accepted 13 April 1996 magnetic field at Mercury with a dipole moment of about 300nT R& (see review by Connerney and Ness (1988)). This magnetic field is sufficient to stand-off the average solar wind at an altitude of about 1 RM as depicted in Fig. 1 (see review by Russell et al. (1988)). For the purposes of comparison the diameter of the Earth is indicated at the bottom of the figure (i.e. 1 RE = 6380 km ; 1 RM = 2439 km). Whether or not the solar wind is ever able to compress and/or erode the dayside magnetosphere to the point where solar wind ions could directly impact the surface remains a topic of considerable controversy (Siscoe and Christopher, 1975 ; Slavin and Holzer, 1979 ; Hood and Schubert, 1979; Suess and Goldstein, 1979; Goldstein et al., 1981). Overall, the basic morphology of this small mag- netosphere appears quite similar to that of the Earth.
    [Show full text]
  • Apollo 17 Press
    7A-/ a NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington. D . C . 20546 202-755-8370 FOR RELEASE: Sunday t RELEASE NO: 72-220K November 26. 1972 B PROJECT: APOLLO 17 (To be launched no P earlier than Dec . 6) R E contents 1-5 6-13 U APOLLC 17 MISSION OBJECTIVES .............14 LAUNCH OPERATIONS .................. 15-17 COUNTDOWN ....................... 18-21 Launch Windows .................. 20 3 Ground Elapsed Time Update ............ 20-21 LAUNCH AND MISSION PROFILE .............. 22-32 Launch Events .................. 24-26 Mission Events .................. 26-28 EVA Mission Events ................ 29-32 APOLLO 17 LANDING SITE ................ 33-36 LUNAR SURFACE SCIENCE ................ 37-55 S-IVB Lunar Impact ................ 37 ALSEP ...................... 37 K SNAP-27 ..................... 38-39 Heat Flow Experiment ............... 40 Lunar Ejecta and Meteorites ........... 41 Lunar Seismic Profiling ............. 41-42 I Lunar Atmospheric Composition Experiment ..... 43 Lunar Surface Gravimeter ............. 43-44 Traverse Gravimeter ............... 44-45 Surface Electrical Properties 45 I-) .......... T Lunar Neutron Probe ............... 46 1 Soil Mechanics .................. 46-47 Lunar Geology Investigation ........... 48-51 Lunar Geology Hand Tools ............. 52-54 Long Term Surface Exposure Experiment ...... 54-55 -more- November 14. 1972 i2 LUNAR ORBITAL SCIENCE ............... .5 6.61 Lunar Sounder ................. .5 6.57 Infrared Scanning Radiometer ......... .5 7.58 Far-Ultraviolet Spectrometer ..........5
    [Show full text]
  • Apollo 10: “Dress Rehearsal” for Apollo 11 Major Mission Objectives
    Apollo 10: “Dress Rehearsal” for Apollo 11 In May of 1969, Apollo 10 became the fourth crewed Apollo mission. As the final preparation for Apollo 11, this mission was designed to execute as much of the Apollo 11 flight plan as possible, except for the actual lunar landing itself. As with all complex space missions, there were a few difficulties along the way, including one scary moment for the crew aboard the Lunar Module, but none of these were major. In general, the Saturn V rocket, Apollo spacecraft and crew performed well, paving the way for the historic lunar landing mission scheduled for July. All photos courtesy of NASA. Major Mission Objectives: • Serve as the first mission with the entire Apollo spacecraft, the Command and Service Model (CSM) and Lunar Module (LM), to orbit the Moon. • Detach the LM from the CSM, with two crew members aboard, and descend to within eight nautical miles of the surface of the Moon. • Duplicate as much of the Apollo 11 lunar landing mission as possible, including close observations of the planned Sea of Tranquility landing site. The Crew Apollo 10 featured a relatively rare all-veteran astronaut crew including Commander Thomas Stafford, who had previously flown on Gemini 6A and 9A; Command Module Pilot John Young, from Gemini 3 and 10; and Lunar Module Pilot Eugene Cernan, John Young’s crewmate on Apollo 9A. These three astronauts would fly on Apollo again, with Stafford serving as Commander of the Apollo- Soyuz mission, John Young as Commander on Apollo 16 and Gene Cernan as the last person to walk on the Moon as the Commander of Apollo 17.
    [Show full text]
  • The Scientific Legacy of Apollo
    The Scientific Legacy of Apollo Ian A. Crawford, Department of Earth and Planetary Sciences, Birkbeck College, University of London ([email protected]). Article published in the December 2012 issue of the Royal Astronomical Society’s journal Astronomy and Geophysics (Vol. 53, pp. 6.24-6.28). Abstract On the 40th anniversary of the last human expedition to the Moon, I review the scientific legacy of the Apollo programme and argue that science would benefit from a human return to the Moon. Introduction This December marks 40 years since the last human beings to set foot on the Moon, Gene Cernan and Harrison “Jack” Schmitt of Apollo 17, left the lunar surface and returned safely to Earth. This anniversary alone would have justified a retrospective look at the legacy of the Apollo project, but it has been given additional poignancy by the death earlier this year of Neil Armstrong, the first man to set foot on the lunar surface with Apollo 11 in July 1969. The history of the Apollo project, and its geopolitical motivation within the context of the Cold War, is of course well documented (e.g. Chaiken 1994; Burrows 1998; Orloff and Harland 2006) and need not be repeated here. However, although the scientific legacy of Apollo has also been well-documented (e.g. Heiken et al. 1991; Wilhelms 1993; Beattie 2001), and is generally well-known within the lunar science community, I have found that it is still underappreciated by many astronomers, and even some planetary scientists who are not directly involved in lunar studies.
    [Show full text]
  • 1 the Lifecycle of Hollows on Mercury
    The Lifecycle of Hollows on Mercury: An Evaluation of Candidate Volatile Phases and a Novel Model of Formation. 1 1 2 3 M. S. Phillips , J. E. Moersch , C. E. Viviano , J. P. Emery 1Department of Earth and Planetary Sciences, University of Tennessee, Knoxville 2Planetary Exploration Group, Johns Hopkins University Applied Physics Laboratory 3Department of Astronomy and Planetary Sciences, Northern Arizona University Corresponding author: Michael Phillips ([email protected]) Keywords: Mercury, hollows, thermal model, fumarole. Abstract On Mercury, high-reflectance, flat-floored depressions called hollows are observed nearly globally within low-reflectance material, one of Mercury’s major color units. Hollows are thought to be young, or even currently active, features that form via sublimation, or a “sublimation-like” process. The apparent abundance of sulfides within LRM combined with spectral detections of sulfides associated with hollows suggests that sulfides may be the phase responsible for hollow formation. Despite the association of sulfides with hollows, it is still not clear whether sulfides are the hollow-forming phase. To better understand which phase(s) might be responsible for hollow formation, we calculated sublimation rates for 57 candidate hollow-forming volatile phases from the surface of Mercury and as a function of depth beneath regolith lag deposits of various thicknesses. We found that stearic acid (C18H36O2), fullerenes (C60, C70), and elemental sulfur (S) have the appropriate thermophysical properties to explain hollow formation. Stearic acid and fullerenes are implausible hollow-forming phases because they are unlikely to have been delivered to or generated on Mercury in high enough volume to account for hollows.
    [Show full text]
  • Planetary Exploration REBOOTED ! New Ways of Exploring the Moon, Mars, & Beyond
    Planetary Exploration REBOOTED ! New ways of exploring the Moon, Mars, & beyond Terry Fong Intelligent Robotics Group NASA Ames Research Center [email protected] irg.arc.nasa.gov Apollo Surface Operations Jack Schmitt & LRV (Apollo 17) Planetary exploration REBOOTED ! 2 What’s Changed Since Apollo? Kaguya Chandrayaan LRO 3D simulation Phoenix Zoë ATHLETE, K10, Chariot MER, Sojourner, MSL Dante II Planetary exploration REBOOTED ! 3 New Ways of Exploring Part 1: Robots for human exploration • Improve planning for crew missions • Off-load “unproductive” tasks • Before, during, & after Part 2: Automated planetary mapping • Image base maps • 3D terrain reconstruction (DEM’s) • Very rapid updates Part 3: Participatory exploration • Public involvement in missions • Neo-geography & Web 2.0 tools • Citizen science & education Planetary exploration REBOOTED ! 4 Part 1: Robots for Human Exploration Purpose • Improve mission planning and crew productivity • Off-load “unproductive” tasks (tedious, repetitive, long-duration) Before crew • Recon (scouting) & prospecting • Site prep, deploy equipment, etc. Supporting crew • Inspection, mobile camera, etc. • Heavy transport & mobility After crew • Follow-up & close-out work • Site survey, supplementary tasks, etc. Planetary exploration REBOOTED ! 5 NASA Human-Robotic Systems Project Research areas Surface mobility . Crew . Habitat . Robots Handling . Cargo . Payloads . Resources Human-robot interaction (HRI) Primary objectives • Address key technical challenges for lunar surface operations • Develop
    [Show full text]