Remote Sensing Techniques for Mangrove Mapping

Total Page:16

File Type:pdf, Size:1020Kb

Remote Sensing Techniques for Mangrove Mapping Remote Sensing Techniques for Mangrove Mapping Chaichoke Vaiphasa Promotors: Prof. Dr. A.K. Skidmore Professor of Vegetation and Agricultural Land Use Survey International Institute for Geo-information Science and Earth Observation (ITC), Enschede and Wageningen University, the Netherlands Prof. Dr. H.H.T. Prins Professor of Tropical Nature Conservation and Vertebrate Ecology Wageningen University, the Netherlands Co-promotor: Dr. W.F. de Boer Assistant Professor Resource Ecology Group Wageningen University, the Netherlands Examining Committee: Prof. Dr. M.E. Schaepman Wageningen University Wageningen Prof. Dr. S.M. de Jong Utrecht University Utrecht Dr. Itthi Trisirisatayawong Chulalongkorn University Bangkok, Thailand Prof. Dr. A.M. Cleef University of Amsterdam Amsterdam Remote Sensing Techniques for Mangrove Mapping Chaichoke Vaiphasa Thesis To fulfil the requirements for the degree of Doctor on the authority of the Rector Magnificus of Wageningen University, Prof. Dr. M.J. Kropff, to be publicly defended on Tuesday 31 January, 2006 at 15:00 hrs in the auditorium of ITC, Enschede, The Netherlands. ISBN: 90-8504-353-0 ITC Dissertation Number: 129 International Institute for Geo-information Science & Earth Observation, Enschede, The Netherlands © 2006 Chaichoke Vaiphasa Table of Contents Table of Contents........................................................................................i Abstract......................................................................................................v Samenvatting ............................................................................................vi Acknowledgements................................................................................. vii Chapter 1 General Introduction ................................................................1 1.1 Remote sensing for mangrove studies .......................................3 1.2 Hyperspectral remote sensing for mangrove discrimination .....3 1.3 Burdens of hyperspectral data ...................................................5 1.3.1 Dimensionality problems...................................................5 1.3.2 Noise levels........................................................................7 1.4 Utilizing mangrove-environment relationships .........................8 1.5. Objectives of the study ..............................................................9 1.6. Outline of the thesis.................................................................10 Chapter 2 Hyperspectral Data for Mangrove Discrimination.................13 Abstract....................................................................................................14 2.1 Introduction..............................................................................15 2.2 Methods ...................................................................................17 2.2.1 Acquisition of hyperspectral data ....................................17 2.2.1.1 Mangrove leaf preparation...............................................17 2.2.1.2 Leaf spectral measurements.............................................19 2.2.2 Data treatments ................................................................20 2.2.2.1 Statistical test...................................................................20 2.2.2.2 Spectral separability.........................................................21 2.3 Results......................................................................................23 2.3.1 ANOVA test....................................................................23 2.3.2 Wrapper feature selection ................................................24 2.3.3 J-M distance.....................................................................24 2.4 Discussion & conclusion.........................................................27 Chapter 3 Dimensionality Problems.......................................................29 Abstract....................................................................................................30 3.1 Introduction..............................................................................31 3.2 Data & Methods.......................................................................32 3.2.1 Species-level hyperspectral data......................................32 3.2.1.1 Mangrove leaf preparation...............................................32 3.2.1.2 Leaf spectral measurements.............................................33 3.2.2 Genetic search algorithms (GA) ......................................34 3.2.2.1 Gene encoding .................................................................34 i 3.2.2.2 Reproduction mechanism ................................................35 3.2.2.3 Fitness criterion ...............................................................36 3.3 Experiments & Results ............................................................36 3.3.1 Initialising the genetic search algorithm..........................36 3.3.2 Choosing an appropriate chromosome size .....................36 3.3.3 Running the genetic search algorithm .............................37 3.3.4 Testing the key hypothesis...............................................42 3.4 Discussion & Conclusion........................................................43 Chapter 4 Spectral Smoothing................................................................47 Abstract....................................................................................................48 4.1 Introduction..............................................................................49 4.2 Methods ...................................................................................51 4.2.1 Smoothing techniques......................................................51 4.2.1.1 Moving average ...............................................................52 4.2.1.2 Savitzky-Golay ................................................................52 4.2.2 Hyperspectral data collection ..........................................52 4.2.3 Experimental use of smoothing filters.............................54 4.2.3.1 Statistical comparisons ....................................................54 4.2.3.2 Spectral separability analysis...........................................54 4.3 Results......................................................................................55 4.4 Discussion & Conclusion........................................................59 Chapter 5 Ecological Data Integration ...................................................63 Abstract....................................................................................................64 5.1 Introduction..............................................................................65 5.2 Methods ...................................................................................66 5.2.1 Study site.........................................................................66 5.2.2 Field survey.....................................................................68 5.2.2.1 Ecological data collection................................................68 5.2.2.2 Mangrove sampling .........................................................70 5.2.3 Input data for the post-classifier ......................................71 5.2.3.1 Soil pH interpolation........................................................71 5.2.3.2 Plant-environment relationships ......................................72 5.2.3.3 The classified image ........................................................73 5.2.4 The post-classifier............................................................76 5.2.5 Statistical test...................................................................77 5.3 Results......................................................................................78 5.4 Discussion & conclusion.........................................................79 Chapter 6 The Synthesis .........................................................................81 6.1 Introduction..............................................................................83 6.2 The main results.......................................................................84 ii 6.2.1 Hyperspectral data for mangrove discrimination.............84 6.2.3 Noise levels......................................................................89 6.2.4 Utilizing mangrove-environment relationships ...............91 6.3 This thesis in a nutshell! ..........................................................92 6.3.1 Why is the follow-on research needed?...........................93 6.3.2 Be at ease with hyperspectral data...................................93 6.3.3 Is exploiting non-spectral information promising?..........95 6.4 Conclusion ...............................................................................96 References................................................................................................97 Curriculum vitae ....................................................................................115 Author’s bibliography............................................................................116 Appendix I: Genetic algorithms step by step.........................................117 Appendix II: Spectral signatures of the mangroves...............................121 Appendix III: The variogram of soil pH interpolation ..........................122 ITC Dissertation List .............................................................................123 iii iv Abstract Mangroves, important components of the
Recommended publications
  • Wetlands of the Nile Basin the Many Eco for Their Liveli This Chapt Distribution, Functions and Contribution to Contribution Livelihoods They Provide
    important role particular imp into wetlands budget (Sutch 11 in the Blue N icantly 1110difi Wetlands of the Nile Basin the many eco for their liveli This chapt Distribution, functions and contribution to contribution livelihoods they provide. activities, ane rainfall (i.e. 1 Lisa-Maria Rebelo and Matthew P McCartney climate chan: food securit; currently eX' arc under tb Key messages water resour support • Wetlands occur extensively across the Nile Basin and support the livelihoods ofmillions of related ;;ervi people. Despite their importance, there are big gaps in the knowledge about the current better evalu: status of these ecosystems, and how populations in the Nile use them. A better understand­ systematic I ing is needed on the ecosystem services provided by the difl:erent types of wetlands in the provide. Nile, and how these contribute to local livelihoods. • While many ofthe Nile's wetlands arc inextricably linked to agricultural production systems the basis for making decisions on the extent to which, and how, wetlands can be sustainably used for agriculture is weak. The Nile I: • Due to these infi)fl11atio!1 gaps, the future contribution of wetlands to agriculture is poorly the basin ( understood, and wetlands are otten overlooked in the Nile Basin discourse on water and both the E agriculture. While there is great potential for the further development of agriculture and marsh, fen, fisheries, in particular in the wetlands of Sudan and Ethiopia, at the same time many that is stat wetlands in the basin are threatened by poor management practices and populations. which at \, In order to ensure that the future use of wetlands for agriculture will result in net benefits (i.e.
    [Show full text]
  • K&C 13 Wetland Theme Days Summary Laura Hess
    K&C 13 Wetland Theme Days Summary Laura Hess Science Team meeting #13 JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Post-Copenhagen Considerations (What Obama Faces in the U.S. Congress) “If we decrease the use of carbon dioxide, are we not taking away plant food from the atmosphere? . All our good intentions could be for vain.” Rep. John Shimkus (Illinois) “Wouldn’t it be ironic if in the interest of global warming we mandated massive switches to wind energy, which is a finite resource, which slows the winds down, which causes the temperature to go up? . It’s just something to think about.” Rep. Bill Posey (Florida) Source: “Who’s the Biggest FoolScience on the Team Hill?”, meeting Mother #13 Jones magazine, Jan/Feb 2010 JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Mapping and Monitoring of Richard Mangroves and Wetlands Lucas Mangrove structural Mangrove change, 2000-2008, northern Australia types, Belize Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Mapping Rice Paddies and Agroecological Bill Attributes in Monsoon Asia Salas Poyang Lake Paddy Crop Region, China Area Calendar Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Wetlands of the Upper Lisa White Nile Rebelo Sudd Marshes Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Central Amazon Wetlands Laura Inundation Periodicity Hess May 2007 (R) June-July 2007 (G) August 2007 (B) Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 Global Monitoring of Wetland Extent Kyle and Dynamics: Boreal Wetlands McDonald Science Team meeting #13, JAXA TKSC/RESTEC HQ, Tsukuba/Tokyo, January 18-22, 2010 K&C deliverables: Mangroves • A standardized object-orientated method for characterising mangroves and detecting change.
    [Show full text]
  • The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan: an Evolutionary Approach to Environment and Development
    The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan: An Evolutionary Approach to Environment and Development JOHN GOWDY HANNES LANG Professor of Economics and Professor of Science Research Associate & Technology Studies School of Life Sciences Rensselaer Polytechnic Institute, Technical University Munich Troy New York, 12180 USA 85354 Freising, Germany [email protected] [email protected] The Economic, Cultural and Ecosystem Values of the Sudd Wetland in South Sudan 1 Contents About the Authors ....................................................................................................................2 Key Findings of this Report .......................................................................................................3 I. Introduction ......................................................................................................................... 4 II. The Sudd ............................................................................................................................ 8 III. Human Presence in the Sudd ..............................................................................................10 IV. Development Threats to the Sudd ........................................................................................ 11 V. Value Transfer as a Framework for Developing the Sudd Wetland ......................................... 15 VI. Maintaining the Ecosystem Services of the Sudd: An Evolutionary Approach to Development and the Environment ...........................................26
    [Show full text]
  • The Republic of South Sudan
    THE REPUBLIC OF SOUTH SUDAN PRESENTATION ON AICHI BIODIVERSITY TARGET 5 THE REPUBLIC OF SOUTH SUDAN • Population of 11.3 million, 83% rural • Abundant natural resources, but very poor country, largely due to the 50 years of conflict Land cover map of 2011 Percent of land area agriculture 4% trees 33% shrubs 39% herbaceous plants 23% Significant habitats and wildlife populations Example: • Savannah and woodland ecosystems, wetlands (the Sudd) • Biodiversity hot spots: Imatong mountains. • WCS aerial Survey (2007 – 2010) found • 1.2 million white-eared kob and mongalla gazelle • 4000 Elephants and viable populations of other large bodied species. Drivers of loss of natural habitat and wildlife • 1973 – 2006: annual forest loss 2% per year • Underlying drivers of deforestation: demographic, economic, technological, policy, institutional and cultural factors • Biodiversity assets are threatened by escalating commercial poaching linked to population of fire arms, refugees returning, grazing, water scarcity, extractive industries for oil and minerals NATURAL HABITATS; INCLUDING FORESTS IN SOUTH SUDAN: - Low land forest. - Maintenance forest. - Savannah wood land. - Grass land savanna. - Flood plain. - Sudd swamps and other wetlands. - Semi-arid region WCS 2012 TABLE: SOUTH SUDAN NATIONAL HABITATS: HABITATS IMPORTANCE THREATS NEW STEPS Lowland Manual: chimpanzees, • Communities • Assessment forest elephants, forest hug, • Insecurity • Management Bongo, Buffalo and • Illegal • Conservation practices forest monkeys. harvesting • Poaching Mountain Plants: Albizzia, • Farming • Law enforcement forest podocarpus • Hunting • Policies (9,000 km²) Animals: Bush pig, bush • Fire • Institutional framework bug, colobus monkeys, • Illegal logging Rich bird life. Protected area. Savannah Sited in the iron stone • Shifting • Community based wood land plateau. cultivation. management and Elephants, hippos, • Rehabilitation collaboration.
    [Show full text]
  • An Ecological Study of the Plant Communities in the Proposed Highveld Published: 26 Apr
    An ecological study of the plant communities in the proposed Highveld National Park Original Research An ecologicAl study of the plAnt communities in the proposed highveld nAtionAl pArk, in the peri-urbAn AreA of potchefstroom, south AfricA Authors: Mahlomola E. Daemane1 ABSTRACT Sarel S. Cilliers2 The proposed Highveld National Park (HNP) is an area of high conservation value in South Hugo Bezuidenhout1 Africa, covering approximately 0.03% of the endangered Grassland Biome. The park is situated immediately adjacent to the town of Potchefstroom in the North-West Province. The objective of Affiliations: this study was to identify, classify, describe and map the plant communities in this park. Vegetation 1Conservation Services sampling was done by means of the Braun-Blanquet method and a total of 88 stratified random Department, South African relevés were sampled. A numerical classification technique (TWINSPAN) was used and the results National Parks, were refined by Braun-Blanquet procedures. The final results of the classification procedure were South Africa presented in the form of phytosociological tables and, thereafter, nine plant communities were described and mapped. A detrended correspondence analysis confirmed the presence of three 2School of Environmental structural vegetation units, namely woodland, shrubland and grassland. Differences in floristic Sciences and composition in the three vegetation units were found to be influenced by environmental factors, Development, North-West such as surface rockiness and altitude. Incidences of harvesting trees for fuel, uncontrolled fires University, South Africa and overgrazing were found to have a significant effect on floristic and structural composition in the HNP. The ecological interpretation derived from this study can therefore be used as a tool for Correspondence to: environmental planning and management of this grassland area.
    [Show full text]
  • 7. Sudd Marshes Management Tools
    k r o w t e N GIS Based Decision Support Tool g n for Sustainable Development i d l of SUDD Marshes Region i (SUDAN) u B y t i c a p a C n i s a B e l i N GIS Based Decision Support Tool for Sustainable Development of SUDD Marshes Region (SUDAN) “Key knowledge” By Mohamed El Shamy Eman Sayed Mamdouh Anter Ibrahim Babakir Muna El Hag Yasser Elwan Coordinated by Prof. Dr. Karima Attia Nile Research Institute, Egypt Scientific Advisor Prof. Roland K. Price UNESCO-IHE Dr. Zoltan Vekerdy ITC 2010 Produced by the Nile Basin Capacity Building Network (NBCBN-SEC) office Disclaimer The designations employed and presentation of material and findings through the publication don’t imply the expression of any opinion whatsoever on the part of NBCBN concerning the legal status of any country, territory, city, or its authorities, or concerning the delimitation of its frontiers or boundaries. Copies of NBCBN publications can be requested from: NBCBN-SEC Office Hydraulics Research Institute 13621, Delta Barrages, Cairo, Egypt Email: [email protected] Website: www.nbcbn.com Images on the cover page are property of the publisher © NBCBN 2010 Project Title Knowledge Networks for the Nile Basin Using the innovative potential of Knowledge Networks and CoP’s in strengthening human and institutional research capacity in the Nile region. Implementing Leading Institute UNESCO-IHE Institute for Water Education, Delft, The Netherlands (UNESCO-IHE) Partner Institutes Ten selected Universities and Ministries of Water Resources from Nile Basin Countries. Project Secretariat Office Hydraulics Research Institute – Cairo - Egypt Beneficiaries Water Sector Professionals and Institutions in the Nile Basin Countries Short Description The idea of establishing a Knowledge Network in the Nile region emerged after encouraging experiences with the first Regional Training Centre on River Engineering in Cairo since 1996.
    [Show full text]
  • Mangrove Kingfisher in South Africa, but the Species Overlap Further North in Mozam- Bique, and Hybridization May Occur (Hanmer 1984A, 1989C)
    652 Halcyonidae: kingfishers Habitat: It occurs in summer along the banks of forested rivers and streams, at or near the coast. In winter it occurs in stands of mangroves, along wooded lagoons and even in suburban gardens and parks, presumably while on mi- gration. Elsewhere in Africa it may occur in woodlands further away from water. Movements: The models show that it occurs in the Transkei (mainly Zone 8) in summer and is absent June– August, while it is absent or rarely reported November– March in KwaZulu-Natal, indicating a seasonal movement between the Transkei and KwaZulu-Natal. Berruti et al. (1994a) analysed atlas data to document this movement in more detail. The atlas records for the Transkei confirm earlier reports in which the species was recorded mainly in summer with occasional breeding records (Jonsson 1965; Pike 1966; Quickelberge 1989; Cooper & Swart 1992). In KwaZulu-Natal, it was previously regarded as a breeding species which moved inland to breed, despite the fact that nearly all records are from the coast in winter (Clancey 1964b, 1965d, 1971c; Cyrus & Robson 1980; Maclean 1993b), and there were no breeding records (e.g. Clancey 1965d; Dean 1971). However, it is possible that it used to be a rare breeding species in KwaZulu-Natal (Clancey 1965d). The atlas and other available data clearly show that it is a nonbreeding migrant to KwaZulu-Natal from the Transkei. Clancey (1965d) suggested that most movement took place in March. Berruti et al. (1994a) showed that it apparently did not overwinter in KwaZulu- Natal south of Durban (2931CC), presumably because of the lack of mangroves in this area.
    [Show full text]
  • South African Biosphere Reserve National Committee
    SOUTH AFRICAN BIOSPHERE RESERVE NATIONAL COMMITTEE BIENNIAL REPORT ON THE IMPLEMENTATION ON THE IMPLEMENTATION OF LIMA ACTION PLAN UNESCO MAN AND BIOSPHERE PROGRAMME ICC INTERNATIONAL COORDINATING COUNCIL 31ST SESSION, PARIS, FRANCE 17-21 JUNE 2019 JUNE 2019 1. BACKGROUND 1.1 Coordination of Man and Biosphere Programme South Africa has started participating in the Man and Biosphere (MAB) Programme since 1995 at the Seville Conference in Spain. The South African National Biosphere Reserve Committee (SA BR NATCOM), which is chaired by the National Department of Environmental Affairs coordinates the Man and Biosphere Programme in South Africa. The SA MAB NATCOM is financially supported by the National Department of Environmental Affairs. The SA MAB NATCOM is operational in accordance with the Lima Action Plan and is comprised of representatives from National, Provincial, local, Non-Profit Organisations and research institutions. SA National BR Committee has met once since the previous MAB ICC Session, in June 2018. South Africa is the current member of the MAB International Coordinating Committee (ICC) elected in November 2017 and also a member of the African Network of Man and Biosphere (AfriMAB) Bureau as coordinator for Southern Africa sub-region, elected in September 2017. The provinces supports Biosphere Reserves with operational funding. At the local level, there are Biosphere Reserve Forum, which meets on quarterly basis. These Forums are comprised of Provincial Government, Local Government, Non-Governmental Organizations and Biosphere
    [Show full text]
  • Know Your National Parks
    KNOW YOUR NATIONAL PARKS 1 KNOW YOUR NATIONAL PARKS KNOW YOUR NATIONAL PARKS Our Parks, Our Heritage Table of contents Minister’s Foreword 4 CEO’s Foreword 5 Northern Region 8 Marakele National Park 8 Golden Gate Highlands National Park 10 Mapungubwe National Park and World Heritage site 11 Arid Region 12 Augrabies Falls National Park 12 Kgalagadi Transfrontier Park 13 Mokala National Park 14 Namaqua National Park 15 /Ai/Ais-Richtersveld Transfrontier Park 16 Cape Region 18 Table Mountain National Park 18 Bontebok National Park 19 Agulhas National Park 20 West Coast National Park 21 Tankwa-Karoo National Park 22 Frontier Region 23 Addo Elephant National Park 23 Karoo National Park 24 DID YOU Camdeboo National Park 25 KNOW? Mountain Zebra National Park 26 Marakele National Park is Garden Route National Park 27 found in the heart of Waterberg Mountains.The name Marakele Kruger National Park 28 is a Tswana name, which Vision means a ‘place of sanctuary’. A sustainable National Park System connecting society Fun and games 29 About SA National Parks Week 31 Mission To develop, expand, manage and promote a system of sustainable national parks that represent biodiversity and heritage assets, through innovation and best practice for the just and equitable benefit of current and future generation. 2 3 KNOW YOUR NATIONAL PARKS KNOW YOUR NATIONAL PARKS Minister’s Foreword CEO’s Foreword We are blessed to live in a country like ours, which has areas by all should be encouraged through a variety of The staging of SA National Parks Week first took place been hailed as a miracle in respect of our transition to a programmes.
    [Show full text]
  • Locking Carbon in Wetlands for Enhanced Climate Action in Ndcs Acknowledgments Authors: Nureen F
    Locking Carbon in Wetlands for Enhanced Climate Action in NDCs Acknowledgments Authors: Nureen F. Anisha, Alex Mauroner, Gina Lovett, Arthur Neher, Marcel Servos, Tatiana Minayeva, Hans Schutten and Lucilla Minelli Reviewers: James Dalton (IUCN), Hans Joosten (Greifswald Mire Centre), Dianna Kopansky (UNEP), John Matthews (AGWA), Tobias Salathe (Secretariat of the Convention on Wetlands), Eugene Simonov (Rivers Without Boundaries), Nyoman Suryadiputra (Wetlands International), Ingrid Timboe (AGWA) This document is a joint product of the Alliance for Global Water Adaptation (AGWA) and Wetlands International. Special Thanks The report was made possible by support from the Sector Program for Sustainable Water Policy of Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) on behalf of the Federal Ministry for Economic Cooperation and Development (BMZ) of the Federal Republic of Germany. The authors would also like to thank the Greifswald Mire Centre for sharing numerous resources used throughout the report. Suggested Citation Anisha, N.F., Mauroner, A., Lovett, G., Neher, A., Servos, M., Minayeva, T., Schutten, H. & Minelli, L. 2020.Locking Carbon in Wetlands for Enhanced Climate Action in NDCs. Corvallis, Oregon and Wageningen, The Netherlands: Alliance for Global Water Adaptation and Wetlands International. Table of Contents Foreword by Norbert Barthle 4 Foreword by Carola van Rijnsoever 5 Foreword by Martha Rojas Urrego 6 1. A Global Agenda for Climate Mitigation and Adaptation 7 1. 1. Achieving the Goals of the Paris Agreement 7 1.2. An Opportunity to Address Biodiversity and GHG Emissions Targets Simultaneously 8 2. Integrating Wetlands in NDC Commitments 9 2.1. A Time for Action: Wetlands and NDCs 9 2.2. Land Use as a Challenge and Opportunity 10 2.3.
    [Show full text]
  • Proposed Expansion of Quarry Near Matjiesfontein, Western Cape Province
    PROPOSED EXPANSION OF QUARRY NEAR MATJIESFONTEIN, WESTERN CAPE PROVINCE BIODIVERSITY ASSESSMENT Ecological Assessment and Wetland Assessment for the proposed expansion of the existing quarry near Matjiesfontein Compiled by JANUARY 2018 Matjiesfontein Quarry: Biodiversity Assessment 1 EXECUTIVE SUMMARY Background It is the intention of Concor Infrastructure to expand an existing quarry on the farm Tweedside No.151 RD in the Lainsburg Municipal District, Western Cape Province. The quarry is approximately 13km west of Matjiesfontein. The expanded quarry will be less than 5ha in extent, including crushing facilities. Flori Scientific Services cc was appointed as the independent consultancy to conduct a strategic (desktop) biodiversity assessment, which includes a terrestrial ecological assessment and a wetland assessment, for the study site. No field investigations were conducted by the author of the report, but by other EAPs involved in the project. Location of the study area The study site consists of an existing quarry area and a proposed expansion area for the quarry. The study area is situated approximately 13km west of Matjiesfontein, on the farm Tweedside 151 RD, in the Lainsburg Municipal District, Western Cape Province. The site is just over 1km due north of the N1 National route and is 4,78ha in area. TERRESTRIAL ECOLOGY Vegetation Due to the complexity and lack of botanical data, the Fynbos Biome is not divided up into Bioregions in the same way, or sense, as that of Savanna or Grassland Biomes. For simplicity of explanation, the Fynbos Biome currently is divided into three ‘Bioregions’ of Fynbos, Renosterveld and Strandveld, with numerous sub-vegetation units and veldtypes.
    [Show full text]
  • Distribution of Tropical Peatland Types, Their Locating and Current Degradation Status Alexandra Barthelmes*1& Cosima Tegetmeyer1
    GLOBAL SYMPOSIUM ON SOIL ORGANIC CARBON, Rome, Italy, 21-23 March 2017 Distribution of tropical peatland types, their locating and current degradation status Alexandra Barthelmes*1& Cosima Tegetmeyer1 1 Greifswald Mire Centre, c/o Greifswald University, Germany (contact: [email protected]) Abstract Peatlands of the Tropics are highly diverse and occur from the coast to alpine altitudes. Natural tropical peatlands are covered by peat swamp forests, wet grasslands, Papyrus reeds, mangroves, salt-marshes, and specific high altitude afro-alpine or páramo vegetation. The total area of tropical peatland is estimated to be 30-45 million ha (10-12% of the total global peatland resource). It constitutes one of the largest near-surface pools of terrestrial organic carbon (Sorensen 1993). Although the exact extent of peatlands in large and partially remote areas is unclear (e.g. western Amazon Basin, Pantanal, Congo Basin, Sudd, Okavango Delta, Ganges Delta), a wealth of information is available to locate the majority of peatlands across the Tropics (cf. Barthelmes et al. 2015). We present an overview of tropical peatland types and their distribution based on ecoregions and geospatial data collated in the Global Peatland Database. The current degradation status of tropical peatlands is addressed in case studies from East Africa, the Ganges Delta and the Guyana shield. Furthermore, we highlight regions where vast areas of undisturbed tropical peatlands (may) occur, and that need protection against land reclamation that involves drainage (e.g. Congo Basin, Zambia floodplains, western Amazon Basin, coastal lowlands of Papua New Guinea). Keywords: Tropics, peatland types and distribution, peatland mapping, organic soil, utilization pressure, drainage Introduction, scope and main objectives Peatlands have become increasingly recognized as a vital part of the world’s wetland resources.
    [Show full text]