Lack of Steady-State in the Global Biogeochemical Si Cycle: Emerging Evidence from Lake Si Sequestration
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Four Hundred Million Years of Silica Biomineralization in Land Plants
Four hundred million years of silica biomineralization in land plants Elizabeth Trembath-Reicherta,1, Jonathan Paul Wilsonb, Shawn E. McGlynna,c, and Woodward W. Fischera aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; bDepartment of Biology, Haverford College, Haverford, PA 19041; and cGraduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved February 20, 2015 (received for review January 7, 2015) Biomineralization plays a fundamental role in the global silicon Silica is widely used within plants for structural support and cycle. Grasses are known to mobilize significant quantities of Si in pathogen defense (19–21), but it remains a poorly understood the form of silica biominerals and dominate the terrestrial realm aspect of plant biology. Recent work on the angiosperm Oryza today, but they have relatively recent origins and only rose to sativa demonstrated that silica accumulation is facilitated by taxonomic and ecological prominence within the Cenozoic Era. transmembrane proteins expressed in root cells (21–24). Phy- This raises questions regarding when and how the biological silica logenetic analysis revealed that these silicon transport proteins cycle evolved. To address these questions, we examined silica were derived from a diverse family of modified aquaporins that abundances of extant members of early-diverging land plant include arsenite and glycerol transporters (19, 21, 25, 26). A clades, which show that silica biomineralization is widespread different member of this aquaporin family was recently identi- across terrestrial plant linages. Particularly high silica abundances fied that enables silica uptake in the horsetail Equisetum,an are observed in lycophytes and early-diverging ferns. -
Modeling Biogeochemical Cycles
4 Modeling Biogeochemical Cycles Henning Rodhe 4.1 Introductory Remarks spatial average (i.e., the physical size of the reservoir itself) often has a horizontal size To formulate a model is to put together pieces of approaching that of a continent, or larger, i.e., knowledge about a particular system into a > 1000 km. The time scales corresponding to this consistent pattern that can form the basis for (1) spatial average are months, or longer. This interpretation of the past history of the system means that day-to-day variations in weather and (2) prediction of the future of the system. To and ocean currents are not generally considered be credible and useful, any model of a physical, explicitly when modeling biogeochemical cycles. chemical or biological system must rely on both The advent of fast computers and the avail- scientific fundamentals and observations of the ability of detailed data on the occurrence of world around us. High-quality observational certain chemical species have made it possible data are the basis upon which our understand- to construct meaningful cycle models with a ing of the environment rests. However, observa- much smaller and faster spatial and temporal tions themselves are not very useful unless the resolution. These spatial and time scales corre- results can be interpreted in some kind of model. spond to those in weather forecast models, i.e. Thus observations and modeling go hand in down to 100 km and 1 h. Transport processes hand. (e.g., for CO2 and sulfur compounds) in the This chapter focuses on types of models used oceans and atmosphere can be explicitly to describe the functioning of biogeochemical described in such models. -
Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O
1122 Biomineralization and Global Biogeochemical Cycles Philippe Van Cappellen Faculty of Geosciences, Utrecht University P.O. Box 80021 3508 TA Utrecht, The Netherlands INTRODUCTION Biological activity is a dominant force shaping the chemical structure and evolution of the earth surface environment. The presence of an oxygenated atmosphere- hydrosphere surrounding an otherwise highly reducing solid earth is the most striking consequence of the rise of life on earth. Biological evolution and the functioning of ecosystems, in turn, are to a large degree conditioned by geophysical and geological processes. Understanding the interactions between organisms and their abiotic environment, and the resulting coupled evolution of the biosphere and geosphere is a central theme of research in biogeology. Biogeochemists contribute to this understanding by studying the transformations and transport of chemical substrates and products of biological activity in the environment. Biogeochemical cycles provide a general framework in which geochemists organize their knowledge and interpret their data. The cycle of a given element or substance maps out the rates of transformation in, and transport fluxes between, adjoining environmental reservoirs. The temporal and spatial scales of interest dictate the selection of reservoirs and processes included in the cycle. Typically, the need for a detailed representation of biological process rates and ecosystem structure decreases as the spatial and temporal time scales considered increase. Much progress has been made in the development of global-scale models of biogeochemical cycles. Although these models are based on fairly simple representations of the biosphere and hydrosphere, they account for the large-scale changes in the composition, redox state and biological productivity of the earth surface environment that have occurred over geological time. -
Nutrient Cycles, Biodegradation, and Bioremediation
LECTURE PRESENTATIONS For BROCK BIOLOGY OF MICROORGANISMS, THIRTEENTH EDITION Michael T. Madigan, John M. Martinko, David A. Stahl, David P. Clark Chapter 24 Nutrient Cycles, Lectures by Biodegradation, and John Zamora Middle Tennessee State University Bioremediation © 2012 Pearson Education, Inc. I. Nutrient Cycles • 24.1 The Carbon Cycle • 24.2 Syntrophy and Methanogenesis • 24.3 The Nitrogen Cycle • 24.4 The Sulfur Cycle • 24.5 The Iron Cycle • 24.6 The Phosphorus, Calcium and Silica Cycles © 2012 Pearson Education, Inc. Marmara University – Enve3003 Env. Eng. Microbiology – Assist. Prof. Deniz AKGÜL 24.1 The Carbon Cycle • Carbon is cycled through all of Earth’s major carbon reservoirs (Figure 24.1) – Includes atmosphere, land, oceans, sediments, rocks and biomass © 2012 Pearson Education, Inc. Marmara University – Enve3003 Env. Eng. Microbiology – Assist. Prof. Deniz AKGÜL CO2 Human Figure 24.1 The carbon cycle activities Respiration The greatest reservoir of carbon on Earth is in rocks and sediments and most of this is in inorganic form as Land Animals and plants microorganisms carbonates Aquatic CO2 CO2 plants and Aquatic Human phyto- animals plankton Biological pump activities Fossil CO2 Humus Death and fuels mineralization Soil formation Respiration Earth’s crust Rock formation Land Animals and plants microorganisms Aquatic CO2 plants and Aquatic phyto- animals plankton Biological pump Fossil CO2 Humus Death and fuels mineralization Soil formation Earth’s crust Rock formation The carbon and oxygen cycles are closely connected, as oxygenic photosynthesis both removes CO2 and produces O2 and respiratory processes both produce CO2 and remove O2 © 2012 Pearson Education, Inc. Marmara University – Enve3003 Env. Eng. -
Marine Microbiology: a Need for Deep-Sea In: Overbeck, J., Chrost, R
3. Role of Heterotrophic Bacteria in Marine Ecological Processes N. Ramaiah National Institute of Oceanography, Dona Paula, Goa 403 004, INDIA Introduction 30°C, salinity varying from below 10 to over 40 PSU, the existence, processes and physiology of life in this To the students of biology, the term bacterium elicits milieu are great challenges. smallness, abundance, invidiousness, and In almost every possible niche, the fundamental completeness of single celled prokaryotes. Among property of bacteria is growth/ multiplication. As a other characteristics, ubiquity, nutritional versatility, result of growth and activity, heterotrophic bacteria in infinite diversity and structural ‘simplicity’ come to one’s the marine sphere too are involved in a number of mind. This smallest autonomous biotic entity in the interrelated processes such as decomposition of living world is the most important functional unit. From complex molecules, respiration, mineralization, the knowledge perceivable through the copious and remineralization and, uptake of dissolved organic burgeoning literature on these tiny creatures, it compounds and their conversion to particulate matter. becomes a matter of great wonder that bacteria are Beginning the 1970s, there have been unprecedented so powerful and all-important in the functioning and discoveries related to marine microbial ecology. The µ stability of ecosystems. With less than 0.1 to 4 m in realization that ubiquitous and self-regulating microbial length, the abilities of decomposing innumerable communities provided the foundation to our organic molecules and several xenobiotics bring understanding on the processes in marine food-web heterotrophic bacteria to the centre-stage of nutrient (Landry, 2001). cycling within the earth’s ecosystems. -
Ecological Succession and Biogeochemical Cycles
Chapter 10: Changes in Ecosystems Lesson 10.1: Ecological Succession and Biogeochemical Cycles Can a plant really grow in hardened lava? It can if it is very hardy and tenacious. And that is how succession starts. It begins with a plant that must be able to grow on new land with minimal soil or nutrients. Lesson Objectives ● Outline primary and secondary succession, and define climax community. ● Define biogeochemical cycles. ● Describe the water cycle and its processes. ● Give an overview of the carbon cycle. ● Outline the steps of the nitrogen cycle. ● Understand the phosphorus cycle. ● Describe the ecological importance of the oxygen cycle. Vocabulary ● biogeochemical cycle ● groundwater ● primary succession ● carbon cycle ● nitrogen cycle ● runoff ● climax community ● nitrogen fixation ● secondary succession ● condensation ● phosphorus cycle ● sublimation ● ecological succession ● pioneer species ● transpiration ● evaporation ● precipitation ● water cycle Introduction Communities are not usually static. The numbers and types of species that live in them generally change over time. This is called ecological succession. Important cases of succession are primary and secondary succession. In Earth science, a biogeochemical cycle or substance turnover or cycling of substances is a pathway by which a chemical substance moves through both biotic (biosphere) and abiotic (lithosphere, atmosphere, and hydrosphere) compartments of Earth. A cycle is a series of change which comes back to the starting point and which can be repeated. The term "biogeochemical" tells us that biological, geological and chemical factors are all involved. The circulation of chemical nutrients like carbon, oxygen, nitrogen, phosphorus, calcium, and water etc. through the biological and physical world are known as biogeochemical cycles. In effect, the element is recycled, although in some cycles there may be places (called reservoirs) where the element is accumulated or held for a long period of time (such as an ocean or lake for water). -
Unit 2 Ecosystems Definition and Concept of Ecosystem Fig. Pond
Subject- Environmental Studies Unit 2 Ecosystems Definition and concept of Ecosystem In nature several communities of organisms live together and interact with each other as well as with their physical environment as an ecological unit. We call it an ecosystem. The term ‘ecosystem’ was coined by A.G. Tansley in 1935. An ecosystem is a functional unit of nature encompassing complex interaction between its biotic (living) and abiotic (non- living) components. For example- a pond is a good example of ecosystem, shown below. Fig. Pond Ecosystem Structure of ecosystem (biotic and abiotic components) Functions of ecosystem Ecosystems are complex dynamic system. They perform certain functions. These are:- (i) Energy flow through food chain (ii) Nutrient cycling (biogeochemical cycles) (iii) Ecological succession or ecosystem development (iv) Homeostasis (or cybernetic) or feedback control mechanisms Food Chain Transfer of food energy from green plants (producers) through a series of organisms with repeated eating and being eaten is called a food chain. Grasses → Grasshopper → Frog → Snake → Hawk/Eagle Each step in the food chain is called trophic level. In the above example grasses are 1st, and eagle represents the 5th trophic level. During this process of transfer of energy some energy (90 per cent) is lost into the system as heat energy and is not available to the next trophic level. Therefore, the number of steps are limited in a chain to 4 or 5. Autotrophs: They are the producers of food for all other organisms of the ecosystem. They are largely green plants and convert inorganic material in the presence of solar energy by the process of photosynthesis into the chemical energy (food). -
Biogeochemical Cycles and Climate Change
White Paper on WCRP Grand Challenge – Draft, February 29, 2016 Biogeochemical Cycles and Climate Change Co-chairs*: Tatiana Ilyina1 and Pierre Friedlingstein2 Processes governing natural biogeochemical cycles and feedbacks currently remove anthropogenic carbon dioxide from the atmosphere, helping to limit climate change. These mitigating effects may significantly reduce in a warmer climate, amplifying risk of climate change and impacts. How the biogeochemical cycles and feedbacks will change is very uncertain. Our grand challenge is to understand how these biogeochemical cycles and feedbacks control greenhouse gas concentrations and impact on the climate system. This Grand Challenge will be addressed through community-led research initiatives on the following key guiding questions: • Q1: What are the drivers of land and ocean carbon sinks? • Q2: What is the potential for amplification of climate change over the 21st century via climate-biogeochemical feedbacks? • Q3: How do greenhouse gases fluxes from highly vulnerable carbon reservoirs respond to changing climate (including climate extremes and abrupt changes)? 1. Background The land and ocean biogeochemical cycles are key components of the Earth’s climate system. The surface fluxes of many greenhouse gases and aerosol precursors are controlled by biogeochemical and physical processes and are sensitive to changes in climate and atmospheric composition. Most importantly, biogeochemical processes control atmospheric concentrations of the main greenhouse gases (CO2, CH4 and N2O). Plants, soils and permafrost on the land together contain at least five times as much carbon as the atmosphere, and the global ocean contains at least fifty times more carbon than the atmosphere. Based on the 2015 Global Carbon Budget estimates, since 1870, CO2 emissions from fossil fuel combustion have released about 400±20 GtC (Gigatonnes carbon) to the atmosphere, while land use change is estimated to have released an additional 145±50 GtC. -
An Analysis of Phosphorus Loading and Trophic State in Fletchers Lake, Nova Scotia
An Analysis of Phosphorus Loading and Trophic State in Fletchers Lake, Nova Scotia by Joanna Poltarowicz Submitted in partial fulfilment of the requirements for the degree of Master of Applied Science at Dalhousie University Halifax, Nova Scotia March 2017 © Copyright by Joanna Poltarowicz, 2017 “It always seems impossible until it’s done.” - Nelson Mandela ii TABLE OF CONTENTS LIST OF FIGURES ....................................................................................................................... v LIST OF TABLES ...................................................................................................................... vii ABSTRACT .................................................................................................................................. ix LIST OF ABBREVIATIONS AND SYMBOLS USED .............................................................. x ACKNOWLEDGEMENTS ........................................................................................................ xii Chapter 1 Introduction ........................................................................................................ 1 1.1 Phosphorus and Eutrophication ........................................................................................ 1 1.2 Motivation for Research ........................................................................................................ 1 1.2.1 Research Objectives ...................................................................................................................... -
Calcium Biogeochemical Cycle in a Typical Karst Forest: Evidence from Calcium Isotope Compositions
Article Calcium Biogeochemical Cycle in a Typical Karst Forest: Evidence from Calcium Isotope Compositions Guilin Han 1,* , Anton Eisenhauer 2, Jie Zeng 1 and Man Liu 1 1 Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China; [email protected] (J.Z.); [email protected] (M.L.) 2 GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany; [email protected] * Correspondence: [email protected]; Tel.: +86-10-82-323-536 Abstract: In order to better constrain calcium cycling in natural soil and in soil used for agriculture, we present the δ44/40Ca values measured in rainwater, groundwater, plants, soil, and bedrock samples from a representative karst forest in SW China. The δ44/40Ca values are found to differ by ≈3.0‰ in the karst forest ecosystem. The Ca isotope compositions and Ca contents of groundwater, rainwater, and bedrock suggest that the Ca of groundwater primarily originates from rainwater and bedrock. The δ44/40Ca values of plants are lower than that of soils, indicating the preferential uptake of light Ca isotopes by plants. The distribution of δ44/40Ca values in the soil profiles (increasing with soil depth) suggests that the recycling of crop-litter abundant with lighter Ca isotope has potential effects on soil Ca isotope composition. The soil Mg/Ca content ratio probably reflects the preferential plant uptake of Ca over Mg and the difference in soil maturity. Light Ca isotopes are more abundant 40 Citation: Han, G.; Eisenhauer, A.; in mature soils than nutrient-depleted soils. The relative abundance in the light Ca isotope ( Ca) is Zeng, J.; Liu, M. -
Teacher Background: Biogeochemical Cycles
TEACHER BACKGROUND: BIOGEOCHEMICAL CYCLES Biogeochemical cycles are intricate processes that transfer, change and store chemicals in the geosphere, atmosphere, hydrosphere, and biosphere. The term biogeochemical cycles expresses the interactions among the organic (bio-) and inorganic (geo-) worlds, and focuses on the chemistry (chemical-), and movement (cycles) of chemical elements and compounds. In its simplest form, cycling describes the movement of elements through various forms and their return to their original state. Separate biogeochemical cycles exist for each chemical element, such as the nitrogen (N), phosphorous (P), and carbon (C) cycles. However, through chemical transformations, elements combine to form compounds, and the biogeochemical cycle of each element must also be considered in relation to the biogeochemical cycles of other elements. 1 Elements and compounds exist in the gaseous, solid, and liquid phases and can be transformed from one phase to another. In studying biogeochemical cycles, it is important to express in a common unit the amount of each element in all its phases and all its chemical compounds. This allows for establishing an "accounting system" for each element and for consideration of the conservation of mass. The law of conservation of mass assumes that elements are neither created nor destroyed in the system. A simple example of the law of conservation of mass This assumption allows for conducting mass balance studies. Mass balance studies track all chemical forms and physical phases of an element, accounting for storage, transport, and transformation of the element. Elements and compounds are stored in major reservoirs - the atmosphere, hydrosphere, lithosphere, and biosphere. The reservoirs are also interconnected, such that the output from one reservoir can become the input to another. -
Silicon Cycling in Soils Revisited
plants Review Silicon Cycling in Soils Revisited Jörg Schaller 1,* , Daniel Puppe 1, Danuta Kaczorek 1,2 , Ruth Ellerbrock 1 and Michael Sommer 1,3 1 Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; [email protected] (D.P.); [email protected] (D.K.); [email protected] (R.E.); [email protected] (M.S.) 2 Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland 3 Institute of Environmental Science and Geography, University of Potsdam, 14476 Potsdam, Germany * Correspondence: [email protected]; Tel.: +49-33432-82371 Abstract: Silicon (Si) speciation and availability in soils is highly important for ecosystem functioning, because Si is a beneficial element for plant growth. Si chemistry is highly complex compared to other elements in soils, because Si reaction rates are relatively slow and dependent on Si species. Consequently, we review the occurrence of different Si species in soil solution and their changes by polymerization, depolymerization, and condensation in relation to important soil processes. We show that an argumentation based on thermodynamic endmembers of Si dependent processes, as currently done, is often difficult, because some reactions such as mineral crystallization require months to years (sometimes even centuries or millennia). Furthermore, we give an overview of Si reactions in soil solution and the predominance of certain solid compounds, which is a neglected but important parameter controlling the availability, reactivity, and function of Si in soils. We further discuss the drivers of soil Si cycling and how humans interfere with these processes. The soil Si cycle is of major importance for ecosystem functioning; therefore, a deeper understanding of drivers of Si cycling (e.g., predominant speciation), human disturbances and the implication for important soil properties (water storage, nutrient availability, and micro aggregate stability) is of fundamental relevance.