Hyperconvexity and Tight Span Theory for Diversities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Injective Hulls of Certain Discrete Metric Spaces and Groups
Injective hulls of certain discrete metric spaces and groups Urs Lang∗ July 29, 2011; revised, June 28, 2012 Abstract Injective metric spaces, or absolute 1-Lipschitz retracts, share a number of properties with CAT(0) spaces. In the 1960es, J. R. Isbell showed that every metric space X has an injective hull E(X). Here it is proved that if X is the vertex set of a connected locally finite graph with a uniform stability property of intervals, then E(X) is a locally finite polyhedral complex with n finitely many isometry types of n-cells, isometric to polytopes in l∞, for each n. This applies to a class of finitely generated groups Γ, including all word hyperbolic groups and abelian groups, among others. Then Γ acts properly on E(Γ) by cellular isometries, and the first barycentric subdivision of E(Γ) is a model for the classifying space EΓ for proper actions. If Γ is hyperbolic, E(Γ) is finite dimensional and the action is cocompact. In particular, every hyperbolic group acts properly and cocompactly on a space of non-positive curvature in a weak (but non-coarse) sense. 1 Introduction A metric space Y is called injective if for every metric space B and every 1- Lipschitz map f : A → Y defined on a set A ⊂ B there exists a 1-Lipschitz extension f : B → Y of f. The terminology is in accordance with the notion of an injective object in category theory. Basic examples of injective metric spaces are the real line, all complete R-trees, and l∞(I) for an arbitrary index set I. -
T-Theory and Analysis of Online Algorithms
UNLV Retrospective Theses & Dissertations 1-1-2007 T-theory and analysis of online algorithms James Oravec University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Oravec, James, "T-theory and analysis of online algorithms" (2007). UNLV Retrospective Theses & Dissertations. 2182. http://dx.doi.org/10.25669/no3p-11tt This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. T-THEORY AND ANALYSIS OF ONLINE ALGORITHMS by James Oravec Bachelor of Arts in Computer Science University of Nevada, Las Vegas 2W05 Master of Science in Computer Science University of Nevada, Las Vegas 2007 A thesis submitted in partial fulfillment of the requirements for the Master of Science in Computer Science Department of Computer Science Howard R. Hughes College of Engineering Graduate College University of Nevada, Las Vegas August 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1448414 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Optimal and Hereditarily Optimal Realizations of Metric Spaces
UPPSALA DISSERTATIONS IN MATHEMATICS 52 Optimal and Hereditarily Optimal Realizations of Metric Spaces Alice Lesser Department of Mathematics Uppsala University UPPSALA 2007 !" #""$ "%& ' ' ' ( ) * + ( ,( #""$( - . - /0 ' 1 2 ( 3- ' 45( &#( $" ( ( 627 8$9:8:&";:8;$:;( ) ' ' ' ' ' ' % * * < *( ) 4 * : =( 6 > 0 ' ' ? * * 0 ' = ' ( 6 6 * ? = :4 ' * ( ' : 4 * ? ( 6 66 * * ' ' 0 ' ' ? ( 6 666 * ' @ ' * * 0 * ' ? ( . * ' 0 * ( 6A *4 > % * * ' 0 ? B ' 0 ' * ' ' 0 ? >( 1 * *4 > ' ' * #: 0 0 * 4 7 ): ' ! "#$ % &'()*$+ & , - . ! ! )/# % &'()*0" & C , #""$ 622 D":#"D8 627 8$9:8:&";:8;$:; % %%% :9#8$ 3 %EE (4(E B F % %%% :9#8$5 “Don’t be too sure,” said the child patiently, “for one of the nicest things about mathematics, or anything else you might care to learn, is that many of the things which can never be, often are. You see,” he went on, “it’s very much like your trying to reach Infinity. You know that it’s there, but you just don’t know where — but just because you can never reach it doesn’t mean that it’s not worth looking for.” Norton Juster, The Phantom Tollbooth Cover image: -
Geometry and Structure of Metric Injective Hulls
Research Collection Doctoral Thesis Geometry and structure of metric injective hulls Author(s): Pavón, Maël Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010633534 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 23120 Geometry and Structure of Metric Injective Hulls A thesis submitted to attain the degree of DOCTOR OF SCIENCES OF ETH ZURICH (Dr. sc. ETH Zurich) presented by Mael¨ Pavon´ MSc ETH Math., ETH Zurich born September 23rd, 1989 citizen of Haut-Intyamon (FR) and Spain accepted on the recommendation of Prof. Dr. Urs Lang, Examiner Prof. Dr. Victor Chepoi, Co-Examiner 2016 Abstract In this thesis, we prove various results on metric injective hulls and injective metric spaces. In Chapter II, we show that the operator given by assigning to a metric space the corresponding metric space defined by Isbell's injective hull is 2-Lipschitz in the Gromov-Hausdorff sense when defined on the class of general metric spaces and 1-Lipschitz when restricted to the class of tree-like metric spaces. These estimates are optimal. In Chapter III, we character- ize effectively the injective affine subspaces of the finite dimensional injective normed spaces in any dimension and go on characterizing effectively injective convex polyhedra, this characterization provides in particular a concrete veri- fication algorithm. We then make use of this result to prove that the solution set of a system of linear inequalities with at most two variables per inequality is injective if it is non-empty. -
Hyperconvexity and Tight-Span Theory for Diversities
Available online at www.sciencedirect.com Advances in Mathematics 231 (2012) 3172–3198 www.elsevier.com/locate/aim Hyperconvexity and tight-span theory for diversities David Bryanta,∗, Paul F. Tupperb a Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9054, New Zealand b Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada Received 25 November 2010; accepted 27 August 2012 Available online 26 September 2012 Communicated by A. Dress Abstract The tight span, or injective envelope, is an elegant and useful construction that takes a metric space and returns the smallest hyperconvex space into which it can be embedded. The concept has stimulated a large body of theory and has applications to metric classification and data visualisation. Here we introduce a generalisation of metrics, called diversities, and demonstrate that the rich theory associated to metric tight spans and hyperconvexity extends to a seemingly richer theory of diversity tight spans and hyperconvexity. ⃝c 2012 Elsevier Inc. All rights reserved. Keywords: Tight span; Injective hull; Hyperconvex; Diversity; Metric geometry 1. Introduction Hyperconvex metric spaces were defined by Aronszajn and Panitchpakdi in[2] as part of a programme to generalise the Hahn–Banach theorem to more general metric spaces (reviewed in [21], and below). Isbell [33] and Dress [11] showed that, for every metric space, there exists an essentially unique “minimal” hyperconvex space into which that space could be embedded, called the tight span or injective envelope. Our aim is to show that the notion of hyperconvexity, the tight span, and much of the related theory can be extended beyond metrics to a class of multi-way metrics which we call diversities.