Co-Seismic Deformation and Fault Slip Model of the 2017 Mw 7.3 Darbandikhan, Iran–Iraq Earthquake Inferred from D-Insar Measurements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coulomb Stresses Imparted by the 25 March
LETTER Earth Planets Space, 60, 1041–1046, 2008 Coulomb stresses imparted by the 25 March 2007 Mw=6.6 Noto-Hanto, Japan, earthquake explain its ‘butterfly’ distribution of aftershocks and suggest a heightened seismic hazard Shinji Toda Active Fault Research Center, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), site 7, 1-1-1 Higashi Tsukuba, Ibaraki 305-8567, Japan (Received June 26, 2007; Revised November 17, 2007; Accepted November 22, 2007; Online published November 7, 2008) The well-recorded aftershocks and well-determined source model of the Noto Hanto earthquake provide an excellent opportunity to examine earthquake triggering associated with a blind thrust event. The aftershock zone rapidly expanded into a ‘butterfly pattern’ predicted by static Coulomb stress transfer associated with thrust faulting. We found that abundant aftershocks occurred where the static Coulomb stress increased by more than 0.5 bars, while few shocks occurred in the stress shadow calculated to extend northwest and southeast of the Noto Hanto rupture. To explore the three-dimensional distribution of the observed aftershocks and the calculated stress imparted by the mainshock, we further resolved Coulomb stress changes on the nodal planes of all aftershocks for which focal mechanisms are available. About 75% of the possible faults associated with the moderate-sized aftershocks were calculated to have been brought closer to failure by the mainshock, with the correlation best for low apparent fault friction. Our interpretation is that most of the aftershocks struck on the steeply dipping source fault and on a conjugate northwest-dipping reverse fault contiguous with the source fault. -
Intraplate Earthquakes in North China
5 Intraplate earthquakes in North China mian liu, hui wang, jiyang ye, and cheng jia Abstract North China, or geologically the North China Block (NCB), is one of the most active intracontinental seismic regions in the world. More than 100 large (M > 6) earthquakes have occurred here since 23 BC, including the 1556 Huax- ian earthquake (M 8.3), the deadliest one in human history with a death toll of 830,000, and the 1976 Tangshan earthquake (M 7.8) which killed 250,000 people. The cause of active crustal deformation and earthquakes in North China remains uncertain. The NCB is part of the Archean Sino-Korean craton; ther- mal rejuvenation of the craton during the Mesozoic and early Cenozoic caused widespread extension and volcanism in the eastern part of the NCB. Today, this region is characterized by a thin lithosphere, low seismic velocity in the upper mantle, and a low and flat topography. The western part of the NCB consists of the Ordos Plateau, a relic of the craton with a thick lithosphere and little inter- nal deformation and seismicity, and the surrounding rift zones of concentrated earthquakes. The spatial pattern of the present-day crustal strain rates based on GPS data is comparable to that of the total seismic moment release over the past 2,000 years, but the comparison breaks down when using shorter time windows for seismic moment release. The Chinese catalog shows long-distance roaming of large earthquakes between widespread fault systems, such that no M ࣙ 7.0 events ruptured twice on the same fault segment during the past 2,000 years. -
Seismic Rate Variations Prior to the 2010 Maule, Chile MW 8.8 Giant Megathrust Earthquake
www.nature.com/scientificreports OPEN Seismic rate variations prior to the 2010 Maule, Chile MW 8.8 giant megathrust earthquake Benoit Derode1*, Raúl Madariaga1,2 & Jaime Campos1 The MW 8.8 Maule earthquake is the largest well-recorded megathrust earthquake reported in South America. It is known to have had very few foreshocks due to its locking degree, and a strong aftershock activity. We analyze seismic activity in the area of the 27 February 2010, MW 8.8 Maule earthquake at diferent time scales from 2000 to 2019. We diferentiate the seismicity located inside the coseismic rupture zone of the main shock from that located in the areas surrounding the rupture zone. Using an original spatial and temporal method of seismic comparison, we fnd that after a period of seismic activity, the rupture zone at the plate interface experienced a long-term seismic quiescence before the main shock. Furthermore, a few days before the main shock, a set of seismic bursts of foreshocks located within the highest coseismic displacement area is observed. We show that after the main shock, the seismic rate decelerates during a period of 3 years, until reaching its initial interseismic value. We conclude that this megathrust earthquake is the consequence of various preparation stages increasing the locking degree at the plate interface and following an irregular pattern of seismic activity at large and short time scales. Giant subduction earthquakes are the result of a long-term stress localization due to the relative movement of two adjacent plates. Before a large earthquake, the interface between plates is locked and concentrates the exter- nal forces, until the rock strength becomes insufcient, initiating the sudden rupture along the plate interface. -
The 2018 Mw 7.5 Palu Earthquake: a Supershear Rupture Event Constrained by Insar and Broadband Regional Seismograms
remote sensing Article The 2018 Mw 7.5 Palu Earthquake: A Supershear Rupture Event Constrained by InSAR and Broadband Regional Seismograms Jin Fang 1, Caijun Xu 1,2,3,* , Yangmao Wen 1,2,3 , Shuai Wang 1, Guangyu Xu 1, Yingwen Zhao 1 and Lei Yi 4,5 1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; [email protected] (J.F.); [email protected] (Y.W.); [email protected] (S.W.); [email protected] (G.X.); [email protected] (Y.Z.) 2 Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan University, Wuhan 430079, China 3 Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China 4 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China; [email protected] 5 Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China * Correspondence: [email protected]; Tel.: +86-27-6877-8805 Received: 4 April 2019; Accepted: 29 May 2019; Published: 3 June 2019 Abstract: The 28 September 2018 Mw 7.5 Palu earthquake occurred at a triple junction zone where the Philippine Sea, Australian, and Sunda plates are convergent. Here, we utilized Advanced Land Observing Satellite-2 (ALOS-2) interferometry synthetic aperture radar (InSAR) data together with broadband regional seismograms to investigate the source geometry and rupture kinematics of this earthquake. Results showed that the 2018 Palu earthquake ruptured a fault plane with a relatively steep dip angle of ~85◦. -
Foreshock Sequences and Short-Term Earthquake Predictability on East Pacific Rise Transform Faults
NATURE 3377—9/3/2005—VBICKNELL—137936 articles Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults Jeffrey J. McGuire1, Margaret S. Boettcher2 & Thomas H. Jordan3 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, and 2MIT-Woods Hole Oceanographic Institution Joint Program, Woods Hole, Massachusetts 02543-1541, USA 3Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-7042, USA ........................................................................................................................................................................................................................... East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion. On average, before large earthquakes occur, local seismicity rates support the inference of slow slip transients, but the subject remains show a significant increase1. In continental regions, where dense controversial23. -
Describe the Geometry of a Fault (1) Orientation of the Plane (Strike and Dip) (2) Slip Vector
Learning goals - January 16, 2012 You will understand how to: Describe the geometry of a fault (1) orientation of the plane (strike and dip) (2) slip vector Understand concept of slip rate and how it is estimated Describe faults (the above plus some jargon weʼll need) Categories of Faults (EOSC 110 version) “Normal” fault “Thrust” or “reverse” fault “Strike-slip” or “transform” faults Two kinds of strike-slip faults Right-lateral Left-lateral (dextral) (sinistral) Stand with your feet on either side of the fault. Which side comes toward you when the fault slips? Another way to tell: stand on one side of the fault looking toward it. Which way does the block on the other side move? Right-lateral Left-lateral (dextral) (sinistral) 1992 M 7.4 Landers, California Earthquake rupture (SCEC) Describing the fault geometry: fault plane orientation How do you usually describe a plane (with lines)? In geology, we choose these two lines to be: • strike • dip strike dip • strike is the azimuth of the line where the fault plane intersects the horizontal plane. Measured clockwise from N. • dip is the angle with respect to the horizontal of the line of steepest descent (perpendic. to strike) (a ball would roll down it). strike “60°” dip “30° (to the SE)” Profile view, as often shown on block diagrams strike 30° “hanging wall” “footwall” 0° N Map view Profile view 90° W E 270° S 180° Strike? Dip? 45° 45° Map view Profile view Strike? Dip? 0° 135° Indicating direction of slip quantitatively: the slip vector footwall • let’s define the slip direction (vector) -
Mercian 11 B Hunter.Indd
The Cressbrook Dale Lava and Litton Tuff, between Longstone and Hucklow Edges, Derbyshire John Hunter and Richard Shaw Abstract: With only a small exposure near the head of its eponymous dale, the Cressbrook Dale Lava is the least exposed of the major lava flows interbedded within the Carboniferous platform- carbonate succession of the Derbyshire Peak District. It underlies a large area of the limestone plateau between Longstone Edge and the Eyam and Hucklow edges. The recent closure of all of the quarries and underground mines in this area provided a stimulus to locate and compile the existing subsurface information relating to the lava-field and, supplemented by airborne geophysical survey results, to use these data to interpret the buried volcanic landscape. The same sub-surface data-set is used to interpret the spatial distribution of the overlying Litton Tuff. Within the regional north-south crustal extension that survey indicate that the outcrops of igneous rocks in affected central and northern Britain on the north side the White Peak are only part of a much larger volcanic of the Wales-Brabant High during the early part of the field, most of which is concealed at depth beneath Carboniferous, a province of subsiding platforms, tilt- Millstone Grit and Coal Measures farther east. Because blocks and half-grabens developed beneath a shallow no large volcano structures have been discovered so continental sea. Intra-plate magmatism accompanied far, geological literature describes the lavas in the the lithospheric thinning, with basic igneous rocks White Peak as probably originating from four separate erupting at different times from a number of small, local centres, each being active in a different area at different volcanic centres scattered across a region extending times (Smith et al., 2005). -
Ductile Deformation - Concepts of Finite Strain
327 Ductile deformation - Concepts of finite strain Deformation includes any process that results in a change in shape, size or location of a body. A solid body subjected to external forces tends to move or change its displacement. These displacements can involve four distinct component patterns: - 1) A body is forced to change its position; it undergoes translation. - 2) A body is forced to change its orientation; it undergoes rotation. - 3) A body is forced to change size; it undergoes dilation. - 4) A body is forced to change shape; it undergoes distortion. These movement components are often described in terms of slip or flow. The distinction is scale- dependent, slip describing movement on a discrete plane, whereas flow is a penetrative movement that involves the whole of the rock. The four basic movements may be combined. - During rigid body deformation, rocks are translated and/or rotated but the original size and shape are preserved. - If instead of moving, the body absorbs some or all the forces, it becomes stressed. The forces then cause particle displacement within the body so that the body changes its shape and/or size; it becomes deformed. Deformation describes the complete transformation from the initial to the final geometry and location of a body. Deformation produces discontinuities in brittle rocks. In ductile rocks, deformation is macroscopically continuous, distributed within the mass of the rock. Instead, brittle deformation essentially involves relative movements between undeformed (but displaced) blocks. Finite strain jpb, 2019 328 Strain describes the non-rigid body deformation, i.e. the amount of movement caused by stresses between parts of a body. -
Hypocenter and Focal Mechanism Determination of the August 23, 2011 Virginia Earthquake Aftershock Sequence: Collaborative Research with VA Tech and Boston College
Final Technical Report Award Numbers G13AP00044, G13AP00043 Hypocenter and Focal Mechanism Determination of the August 23, 2011 Virginia Earthquake Aftershock Sequence: Collaborative Research with VA Tech and Boston College Martin Chapman, John Ebel, Qimin Wu and Stephen Hilfiker Department of Geosciences Virginia Polytechnic Institute and State University 4044 Derring Hall Blacksburg, Virginia, 24061 (MC, QW) Department of Earth and Environmental Sciences Boston College Devlin Hall 213 140 Commonwealth Avenue Chestnut Hill, Massachusetts 02467 (JE, SH) Phone (Chapman): (540) 231-5036 Fax (Chapman): (540) 231-3386 Phone (Ebel): (617) 552-8300 Fax (Ebel): (617) 552-8388 Email: [email protected] (Chapman), [email protected] (Ebel), [email protected] (Wu), [email protected] (Hilfiker) Project Period: July 2013 - December, 2014 1 Abstract The aftershocks of the Mw 5.7, August 23, 2011 Mineral, Virginia, earthquake were recorded by 36 temporary stations installed by several institutions. We located 3,960 aftershocks from August 25, 2011 through December 31, 2011. A subset of 1,666 aftershocks resolves details of the hypocenter distribution. We determined 393 focal mechanism solutions. Aftershocks near the mainshock define a previously recognized tabular cluster with orientation similar to a mainshock nodal plane; other aftershocks occurred 10-20 kilometers to the northeast. Detailed relocation of events in the main tabular cluster, and hundreds of focal mechanisms, indicate that it is not a single extensive fault, but instead is comprised of at least three and probably many more faults with variable orientation. A large percentage of the aftershocks occurred in regions of positive Coulomb static stress change and approximately 80% of the focal mechanism nodal planes were brought closer to failure. -
Probabilistic Seismic Hazard Assessment of the Meers Fault, Southwestern Oklahoma: Modeling and Uncertainties
Probabilistic Seismic Hazard Assessment of the Meers Fault, Southwestern Oklahoma: Modeling and Uncertainties Emma M. Baker and Austin A. Holland Special Publication SP2013-02 DRAFT REPORT MAY 16, 2013 OKLAHOMA GEOLOGICAL SURVEY Sarkeys Energy Center 100 East Boyd St., Rm. N-131 Norman, Oklahoma 73019-0628 SPECIAL PUBLICATION SERIES The Oklahoma Geological Survey’s Special Publication series is designed to bring new geologic information to the public in a manner efficient in both time and cost. The material undergoes a minimum of editing and is published for the most part as a final, author-prepared report. Each publication is numbered according to the year in which it was published and the order of its publication within that year. Gaps in the series occur when a publication has gone out of print or when no applicable publications were issued in that year. This publication is issued by the Oklahoma Geological Survey as authorized by Title 70, Oklahoma Statutes, 1971, Section 3310, and Title 74, Oklahoma Statutes, 1971, Sections 231-238. This publication is only available as an electronic publication. 1. Table of Contents 2. Summary .................................................................................................................................................... 4 3. Introduction .............................................................................................................................................. 5 3.1. Geologic Background .................................................................................................................................... -
Coulomb Stress Evolution in Northeastern Caribbean Over the Past 250 Years Due to Coseismic, Postseismic and Interseismic Deformation
Geophys. J. Int. (2008) 174, 904–918 doi: 10.1111/j.1365-246X.2008.03634.x Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseismic and interseismic deformation Syed Tabrez Ali,1 Andrew M. Freed,1 Eric Calais,1 David M. Manaker1,∗ and William R. McCann2 1Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN 47907, USA. E-mail: [email protected] 2Earth Scientific Consultants, 10210 West 102nd Ave, Westminster, CO 80021,USA Accepted 2007 September 24. Received 2007 September 19; in original form 2007 July 21 SUMMARY The Northeastern Caribbean region accommodates ∼20 mm yr−1 of oblique convergence be- tween the North American and Caribbean plates, which is distributed between the subduction interface and major strike-slip faults within the overriding plate. As a result, this heavily populated region has experienced eleven large (M ≥ 7.0) earthquakes over the past 250 yr. In an effort to improve our understanding of the location and timing of these earthquakes, with an eye to understand where current seismic hazards may be greatest, we calculate the evolution of Coulomb stress on the major faults since 1751 due to coseismic, postseismic, and interseismic deformation. Our results quantify how earthquakes serve to relieve stress accumulated due to interseismic loading and how fault systems communicate with each other, serving both to advance or retard subsequent events. We find that the observed progressive westwards propagation of earthquakes on the Septentrional and Enriquillo strike-slip faults and along the megathrust was encouraged by coseismic stress changes associated with prior earthquakes. -
Qt88c3k67v.Pdf
UC Berkeley UC Berkeley Previously Published Works Title Early aftershocks and afterslip surrounding the 2015 Mw 8.4 Illapel rupture Permalink https://escholarship.org/uc/item/88c3k67v Authors Huang, H Xu, W Meng, L et al. Publication Date 2017 DOI 10.1016/j.epsl.2016.09.055 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Early aftershocks and afterslip surrounding the 2015 Mw 8.4 Illapel rupture Author links open overlay panel HuiHuang a WenbinXu bc LingsenMeng a RolandBürgmann b Juan CarlosBaez d Show more https://doi.org/10.1016/j.epsl.2016.09.055 Get rights and content Highlights • Missing early aftershocks and repeaters are recovered by the matched- filtermethod. • Differential southward and northward expansion of early aftershocks are observed. • Repeaters and geodetic data reveal afterslip around the Illapel mainshock rupture. Abstract On 16 September 2015, the Mw 8.4 Illapel earthquake ruptured a section of the subduction thrust on the west coast of central Chile. The mainshock was followed by numerous aftershocks including some normal-faulting events near the trench. We apply a template matching approach to improve the completeness of early aftershocks within one month of the mainshock. To constrain the distribution of afterslip, we utilize repeating earthquakes among the aftershocks and perform a joint slip inversion of postseismic GPS and InSAR data. The results show that the aftershock zone abruptly expands to the south ∼14 h after the mainshock while growing relatively continuously to the north within the first day. The repeating earthquakes accompanying the early expansion suggest that aseismic afterslip on the subduction thrust surrounding the coseismic rupture is an important triggering mechanism of aftershocks in addition to stress transfer or poroelastic effects.