Maei14can%Mlseum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Changes in Species Composition of Haploniscidae (Crustacea Isopoda)
Progress in Oceanography 180 (2020) 102233 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Changes in species composition of Haploniscidae (Crustacea: Isopoda) across T potential barriers to dispersal in the Northwest Pacific ⁎ Nele Johannsena,b, Lidia Linsa,b,c, Torben Riehla,b, Angelika Brandta,b, a Goethe University, Biosciences, Institute for Ecology, Evolution und Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany b Senckenberg Research Institute and Natural History Museum, Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany c Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium ARTICLE INFO ABSTRACT Keywords: Speciation processes as drivers of biodiversity in the deep sea are still not fully understood. One potential driver Hadal for species diversification might be allopatry caused by geographical barriers, such as ridges or trenches, or Ecology physiological barriers associated with depth. We analyzed biodiversity and biogeography of 21 morphospecies of Sea of Okhotsk the deep-sea isopod family Haploniscidae to investigate barrier effects to species dispersal in the Kuril- Deep sea Kamchatka Trench (KKT) area in the Northwest (NW) Pacific. Our study is based on 2652 specimens from three Abyssal genera, which were collected during the German-Russian KuramBio I (2012) and II (2016) expeditions as well as Isopoda Kuril Kamchatka Trench the Russian-German SokhoBio (2015) campaign. The sampling area covered two potential geographical barriers Distribution (the Kuril Island archipelago and the Kuril-Kamchatka Trench), as well as three depth zones (bathyal, abyssal, Northwest Pacific hadal). We found significant differences in relative species abundance between abyssal and hadal depths. -
Zootaxa, Haplomesus (Crustacea: Isopoda: Ischnomesidae)
Zootaxa 1120: 1–33 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1120 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Heterochrony in Haplomesus (Crustacea: Isopoda: Ischnomesidae): revision of two species and description of two new species FIONA A. KAVANAGH1, GEORGE D. F. WILSON2 & ANNE MARIE POWER1 1 Department of Zoology, National University of Ireland, Galway, Ireland. [email protected] 2 Australian Museum, 6 College Street, Sydney, NSW 2010, Australia. [email protected] Abstract Two new species of Ischnomesidae, Haplomesus celticensis sp. nov. and Haplomesus hanseni sp. nov. are described from the southwest of Ireland and the Argentine Basin respectively. Both species lack the expression of pereopod VII, a characteristic that we argue is produced by progenesis, not neoteny as suggested by Brökeland & Brandt (2004). Haplomesus angustus Hansen, 1916 and Haplomesus tropicalis Menzies, 1962, also lack pereopod VII and are revised from the type material. The original description of Haplomesus angustus Hansen, 1916 describes the adult type specimen as a juvenile; the original description of Haplomesus tropicalis Menzies, 1962 fails to mention the lack of pereopod VII. Progenesis is discussed for the above species and within the family Ischnomesidae as a whole. Key words: Isopoda, Asellota, Ischnomesidae, Haplomesus, heterochrony, progenesis Introduction The Ischnomesidae is a family of marine benthic asellote isopods found mostly at bathyal and abyssal depths, with records from about 250–7000 m (Wolff 1962; Kussakin 1988). To date, 99 species have been described in five genera. The known diversity of this family, however, is increasing owing to recent reports of several new species (e.g. -
(Janiridae, Isopoda, Crustacea), a Second Species of Austrofilius in the Mediterranean Sea, with a Discussion on the Evolutionary Biogeography of the Genus J
Austrofilius MAJORICENSIS SP. NOV. (JANIRIDAE, ISOPODA, CRUSTACEA), A SECOND SPECIES OF AUSTROFILIUS IN THE MEDITERRANEAN SEA, WITH A DISCUSSION ON THE EVOLUTIONARY BIOGEOGRAPHY OF THE GENUS J. Castelló To cite this version: J. Castelló. Austrofilius MAJORICENSIS SP. NOV. (JANIRIDAE, ISOPODA, CRUSTACEA), A SECOND SPECIES OF AUSTROFILIUS IN THE MEDITERRANEAN SEA, WITH A DISCUS- SION ON THE EVOLUTIONARY BIOGEOGRAPHY OF THE GENUS. Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 2008, pp.193-201. hal-03246157 HAL Id: hal-03246157 https://hal.sorbonne-universite.fr/hal-03246157 Submitted on 2 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE ET MILIEU - LIFE AND ENVIRONMENT, 2008, 58 (3/4): 193-201 AUSTROFILIUS MAJORICENSIS SP. NOV. (JANIRIDAE, ISOPODA, CRUSTACEA), A SECOND SPECIES OF AUSTROFILIUS IN THE MEDITERRANEAN SEA, WITH A DISCUSSION ON THE EVOLUTIONARY BIOGEOGRAPHY OF THE GENUS J. CASTELLÓ Departament de Didàctica de les Ciències Experimentals i de la Matemàtica, Universitat de Barcelona, Passeig de la Vall d’Hebron 171, 08035 Barcelona, Spain [email protected] ISOPODA Abstract. – A new species of Janiroidean isopod, Austrofilius majoricensis sp. nov., from ASELLOTA JANIRIDAE Majorca (Balearic Islands, Western Mediterranean), is described. -
Crustacea, Malacostraca)*
SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young. -
Systematics, Zoogeography, Evolution and Biodiversity of Antarctic Deep-Sea Isopoda (Crustacea: Malacostraca)
Systematics, zoogeography, evolution and biodiversity of Antarctic deep-sea Isopoda (Crustacea: Malacostraca) Dissertation zur Erlangung des Doktorgrades des Fachbereichs Biologie der Universität Hamburg vorgelegt von Wiebke Brökeland aus Essen Hamburg 2005 Our knowledge can only be finite, while our ignorance must necessarily be infinite. Karl Raimund Popper According to ICZN article 8.3 all names and nomenclatural acts in this thesis are disclaimed for nomenclatural purposes. Table of contents Summary..................................................................................................................................... i 1 Introduction............................................................................................................................ 1 1.1 The deep sea................................................................................................................................. 1 1.2 The Southern Ocean ................................................................................................................... 2 1.3 Deep-sea Isopoda......................................................................................................................... 3 1.4 Aims and questions ..................................................................................................................... 5 2 Material and Methods ............................................................................................................ 6 2.1 Sampling ..................................................................................................................................... -
Isopoda, Munnopsidae) from Icelandic Waters
vol. 35, no. 2, pp. 361–388, 2014 doi: 10.2478/popore−2014−0013 Two new species of the genus Eurycope (Isopoda, Munnopsidae) from Icelandic waters Sarah SCHNURR1* and Marina V. MALYUTINA2 1 Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), c/o Biocentrum Grindel, Martin−Luther−King−Platz 3, 20146 Hamburg, Germany <[email protected]> 2 A.V. Zhirmunsky Institute of Marine Biology FEB RAS, Palchevsky Str, 17, 690041, Far East Federal University, Oktiabrskaya Str, 29, 690600, Vladivostok, Russia <[email protected]> * corresponding author Abstract: Collections of munnopsid isopods of the BIOICE (Benthic Invertebrates of Ice− landic Waters; 1991–2004) and the IceAGE1 (Icelandic Marine Animals: Genetics and Ecology; since 2011) expeditions included ten species of the genus Eurycope G.O. Sars, 1864, thereof are two species new to science. Thus, the descriptions of the two new species are presented herein. Eurycope elianae sp. n. is distinguished from the other species of the genus mainly by two long, slightly robust, simple setae on the tip of the rostrum in combina− tion with the size and shape of the rostrum itself. E elianae sp. n. shares the presence of two long, slightly robust, simple seta on the tip of the rostrum with E. tumidicarpus. The shape of the rostrum itself is more similar to E. inermis and species of the E. complanata complex. E. aculeata sp. n. is characterized by possessing dorsomedial acute projections on pereo− nites 5–7, which is unusual for the genus. E. aculeata sp. n. is most similar to E. cornuta. Both new species are, so far, known only from localities south of the Greenland−Scotland Ridge. -
Angelika Brandt
PUBLICATION LIST: DR. ANGELIKA BRANDT Research papers (peer reviewed) Wägele, J. W. & Brandt, A. (1985): New West Atlantic localities for the stygobiont paranthurid Curassanthura (Crustacea, Isopoda, Anthuridea) with description of C. bermudensis n. sp. Bijdr. tot de Dierkd. 55 (2): 324- 330. Brandt, A. (1988):k Morphology and ultrastructure of the sensory spine, a presumed mechanoreceptor of the isopod Sphaeroma hookeri (Crustacea, Isopoda) and remarks on similar spines in other peracarids. J. Morphol. 198: 219-229. Brandt, A. & Wägele, J. W. (1988): Antarbbbcturus bovinus n. sp., a new Weddell Sea isopod of the family Arcturidae (Isopoda, Valvifera) Polar Biology 8: 411-419. Wägele, J. W. & Brandt, A. (1988): Protognathia n. gen. bathypelagica (Schultz, 1978) rediscovered in the Weddell Sea: A missing link between the Gnathiidae and the Cirolanidae (Crustacea, Isopoda). Polar Biology 8: 359-365. Brandt, A. & Wägele, J. W. (1989): Redescriptions of Cymodocella tubicauda Pfeffer, 1878 and Exosphaeroma gigas (Leach, 1818) (Crustacea, Isopoda, Sphaeromatidae). Antarctic Science 1(3): 205-214. Brandt, A. & Wägele, J. W. (1990): Redescription of Pseudidothea scutata (Stephensen, 1947) (Crustacea, Isopoda, Valvifera) and adaptations to a microphagous nutrition. Crustaceana 58 (1): 97-105. Brandt, A. & Wägele, J. W. (1990): Isopoda (Asseln). In: Sieg, J. & Wägele, J. W. (Hrsg.) Fauna der Antarktis. Verlag Paul Parey, Berlin und Hamburg, S. 152-160. Brandt, A. (1990): The Deep Sea Genus Echinozone Sars, 1897 and its Occurrence on the Continental shelf of Antarctica (Ilyarachnidae, Munnopsidae, Isopoda, Crustacea). Antarctic Science 2(3): 215-219. Brandt, A. (1991): Revision of the Acanthaspididae Menzies, 1962 (Asellota, Isopoda, Crustacea). Journal of the Linnean Society of London 102: 203-252. -
The Shallow-Water Asellota (Crustacea: Isopoda) from the Beagle Channel: Preliminary Taxonomic and Zoogeographical Results*
SCI. MAR., 69 (Suppl. 2): 159-166 SCIENTIA MARINA 2005 THE MAGELLAN-ANTARCTIC CONNECTION: LINKS AND FRONTIERS AT HIGH SOUTHERN LATITUDES. W.E. ARNTZ, G.A. LOVRICH and S. THATJE (eels.) The shallow-water Asellota (Crustacea: Isopoda) from the Beagle Channel: Preliminary taxonomic and zoogeographical results* BRENDA LIA DOTI>, DANIEL ROCCATAGLIATA ' and DIEGO GABRIEL ZELAYA2 1 Departamento de Biodiversidad y Biologi'a Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. E-mail: [email protected] 2Museo de La Plata, Paseo del Bosque s/n, (1900) La Plata, Provincia de Buenos Aires, Argentina. SUMMARY: The shallow-water Asellota from the Beagle Channel were investigated, based on material collected at four localities in 2001-2002. A total of 3,124 asellotes were sorted, and three new species and 12 new records of distribution were reported. The Paramunnidae showed the highest species diversity and abundance (11 species and 1,463 specimens). The pre sent research raises the number of species known from the Beagle Channel to 23; of these, 16 were previously reported from the Magellan Straits, representing 69% of similarity. Based on the present results and published data, the faunistic affinities for the shallow-water Asellota was 30% between the Magellan region and the Scotia Arc, and 26% between the Magellan region and the Antarctic Peninsula. Keywords: Asellota, Isopoda, diversity, Beagle Channel, Magellan region. RESUMEN: ASELLOTA (CRUSTACEA: ISOPODA) DE AGUAS SOMERAS DEL CANAL BEAGLE: PRIMEROS RESULTADOS TAXONOMI- cos Y BIOGEOGRAFICOS. - Se estudiaron los isopodos Asellota colectados en cuatro localidades de aguas poco profundas del Canal Beagle en el 2001 y 2002. -
Deep-Sea Life Issue 16, January 2021 Cruise News Sedimentation Effects Survey Series (ROBES III) Completed
Deep-Sea Life Issue 16, January 2021 Despite the calamity caused by the global pandemic, we are pleased to report that our deep ocean continues to be investigated at an impressive rate. Deep-Sea Life 16 is another bumper issue, brimming with newly published research, project news, cruise news, scientist profiles and so on. Even though DOSI produce a weekly Deep-Sea Round Up newsletter and DOSI and DSBS are active on social media, there’s still plenty of breaking news for Deep- Sea Life! Firstly a quick update on the status of INDEEP. As most of you are aware, INDEEP was a legacy programme of the Census of Marine Life (2000-2010) and was established to address knowledge gaps in deep-sea ecology. Among other things, the INDEEP project played central role in the creation of the Deep-Ocean Stewardship Initiative and funded initial DOSI activities. In 2018, the DOSI Decade of Ocean Science working group was established with a view to identifying key priorities for deep-ocean science to support sustainable development and to ensure deep- ocean ecological studies were included in the UN Decade plans via truly global collaborative science. This has resulted in an exciting new initiative called “Challenger 150”. You are all invited to learn more about this during a webinar on 9th Feb (see p. 22 ). INDEEP has passed on the baton and has now officially closed its doors.Eva and I want to sincerely thank all those that led INDEEP with us and engaged in any of the many INDEEP actions. It was a productive programme that has left a strong legacy. -
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. -
Deep-Sea Isopod Coperonus Pinguis N. (Crustacea, Isopoda, Munnopsidae)
Bijdragen tot de Dierkunde, 62 (1) 55-61 (1992) SPB Academie Publishingbv, The Hague A new deep-sea isopod from the Weddell Sea, Antarctica: Coperonus pinguis n. sp. (Crustacea, Isopoda, Munnopsidae) Angelika Brandt Institutfür Polarökologie, Universität Kiel, Olshausenstr. 40-60, 2300 Kiel, Germany Weddell Keywords: taxonomy, biogeography, Antarctica, Sea, deep sea, Coperonus Abstract Brandt, in press). Since then, no Coperonus species has been found south of 72°S. Only one species is A known from the C. new species of Coperonus, C. pinguis, is described from the deep sea, comptus Wilson, Antarctic Antarctic deep sea. It is the first record of an deep-sea the is of 1989, although genus undoubtedly deep- species in this genus and the southernmost record of Coperonus. sea origin, as generally accepted for the munnopsid genera (Hessler & Thistle, 1975; Hessler & Wilson, 1983; Wägele, 1989; Wilson, 1987, 1989). Zusammenfassung Eine neueArt der Gattung Coperonus, C. pinguis, wird aus der Material and methods antarktischen Tiefsee beschrieben. Dies ist der erste Fund einer antarktischen Tiefseeart dieser Gattung; außerdem stellt er den The single specimen was collected during the "Eu- bisher südlichsten Fund der Coperonus-Arten dar. ropean Polarstern Expedition" in the Antarctic summer 1988/89 in the southern Weddell Sea by Introduction means of an Agassiz trawl. On deck, subsamples were taken and later pre-sorted in the "Centre Na- tional de Tri A Coperonus species hitherto unknown to science D'Océanographie Biologique" (CEN- TOB, IFREMER, Brest). In the laboratory the was discovered among isopods collected during the material sorted under Wild M5 European Polarstern Expedition in the Antarctic was a dissecting microscope and illustrated a Leitz Dialux summer of 1988/89. -
New Zealand and Australian Ilyarachninae (Isopoda : Asellota : Munnopsidae) and Their Worldwide Relationships
NEW ZEALAND AND SOUTH-EAST AUSTRALIAN ILYARACHNINAE (ISOPODA: ASELLOTA: MUNNOPSIDAE) AND THEIR WORLDWIDE RELATIONSHIPS A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Zoology in the University of Canterbury by Kelly L. Merrin University of Canterbury 2007 “It was certainly not a very pleasant work to be dabbling with naked hands in the water with the temperature down to -5 Fahr. But when our fingers tingle the most and are stiff and numbed with cold, we have this to comfort us, that we are suffering for the cause of science, and that many zoologists are waiting for the results we shall bring back and thank us accordingly.” Nicolai Hanson, May 10th 1899, Zoologist with the Southern Cross. To all those who have collected and sorted the material which I have worked with in this study, thank-you. ii Table of Contents List of figures ………………………………………………………………......vi List of tables …………………………………………………………………..viii List of appendices ……………………………………………………………...ix Abstract ………………………………………………………………………....x Acknowledgements ……………………………………………………………xii Chapter 1: General Introduction ……………………………………………...1 1.1 Introduction to the family Munnopsidae …………….……………..1 1.2 Morphology of the family Munnopsidae …………….……………..2 1.3 Introduction to the subfamily Ilyarachninae ….….………….……...4 1.4 Aims ………. ……………………………………………………….6 Chapter 2: A phylogenetic revision of the family Munnopsidae …………….8 2.1 Phylogenetic review ………………………………………………..8 2.1.1 A summary of past methods used in constructing asellote phylogenies