Overview and Comparison of Gate Level Quantum Software Platforms Ryan Larose1,2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Update on Google's Quantum Computing Initiative
An Update on Google’s Quantum Computing Initiative January 31, 2019 [email protected] Copyright 2018 Google LLC Our Brains are Wired for Newtonian Physics Brains that recognize and anticipate behaviors of Heat, Light, Momentum, Gravity, etc. have an Evolutionary Advantage. Quantum phenomena contradict our intuition. Quantum Phenomena Contradict Intuition Interference, “Erasure”, etc. 0 Quantum Theory Explains ( 1) Cleanly… ...but the Math looks Strange 1 1 1 1 i i How can a Particle be √2 √2 i 1 On Two Paths at the Same Time? 1 1 √2 i P u 1 1 i P ( r) √2 i 1 Copyright 2017-2019 Google LLC Superposed States, Superposed Information l0〉 2 ( |0〉+|1〉 ) |0〉 + |1〉 = |00〉+|01〉+|10〉+|11〉 l1〉 Copyright 2017-2019 Google LLC 01 Macroscopic QM Enables New Technology Control of single quantum systems, to quantum computers 1 nm 1 μm 1 mm H atom wavefunctions: Problem: Light is 1000x larger Large “atom” has room for complex control Copyright 2017-2019 Google LLC Xmon: Direct coupling + Tunable Transmons ● Direct qubit-qubit capacitive coupling ● Turn interaction on and off with frequency g control “OFF” “ON” f10 f 21 Δ Frequency η Frequency Coupling g Qubit Qubit SQUID 2 2 Coupling rate Ωzz ≈ 4ηg / Δ Qubit A Qubit B Copyright 2017-2019 Google LLC Logic Built from Universal Gates Classical circuit: Quantum circuit: 1 bit NOT 1 qubit rotation 2 bit AND 1 Input Gates 2 qubit CNOT Wiring fan-out No copy 2 Input Gates (space+time ) time Copyright 2017-2019 Google LLC Execution of a Quantum Simulation arXiv:1512.06860 Copyright 2017-2019 Google LLC Quantum -
A Tutorial Introduction to Quantum Circuit Programming in Dependently Typed Proto-Quipper
A tutorial introduction to quantum circuit programming in dependently typed Proto-Quipper Peng Fu1, Kohei Kishida2, Neil J. Ross1, and Peter Selinger1 1 Dalhousie University, Halifax, NS, Canada ffrank-fu,neil.jr.ross,[email protected] 2 University of Illinois, Urbana-Champaign, IL, U.S.A. [email protected] Abstract. We introduce dependently typed Proto-Quipper, or Proto- Quipper-D for short, an experimental quantum circuit programming lan- guage with linear dependent types. We give several examples to illustrate how linear dependent types can help in the construction of correct quan- tum circuits. Specifically, we show how dependent types enable program- ming families of circuits, and how dependent types solve the problem of type-safe uncomputation of garbage qubits. We also discuss other lan- guage features along the way. Keywords: Quantum programming languages · Linear dependent types · Proto-Quipper-D 1 Introduction Quantum computers can in principle outperform conventional computers at cer- tain crucial tasks that underlie modern computing infrastructures. Experimental quantum computing is in its early stages and existing devices are not yet suitable for practical computing. However, several groups of researchers, in both academia and industry, are now building quantum computers (see, e.g., [2,11,16]). Quan- tum computing also raises many challenging questions for the programming lan- guage community [17]: How should we design programming languages for quan- tum computation? How should we compile and optimize quantum programs? How should we test and verify quantum programs? How should we understand the semantics of quantum programming languages? In this paper, we focus on quantum circuit programming using the linear dependently typed functional language Proto-Quipper-D. -
Qiskit Backend Specifications for Openqasm and Openpulse
Qiskit Backend Specifications for OpenQASM and OpenPulse Experiments David C. McKay1,∗ Thomas Alexander1, Luciano Bello1, Michael J. Biercuk2, Lev Bishop1, Jiayin Chen2, Jerry M. Chow1, Antonio D. C´orcoles1, Daniel Egger1, Stefan Filipp1, Juan Gomez1, Michael Hush2, Ali Javadi-Abhari1, Diego Moreda1, Paul Nation1, Brent Paulovicks1, Erick Winston1, Christopher J. Wood1, James Wootton1 and Jay M. Gambetta1 1IBM Research 2Q-CTRL Pty Ltd, Sydney NSW Australia September 11, 2018 Abstract As interest in quantum computing grows, there is a pressing need for standardized API's so that algorithm designers, circuit designers, and physicists can be provided a common reference frame for designing, executing, and optimizing experiments. There is also a need for a language specification that goes beyond gates and allows users to specify the time dynamics of a quantum experiment and recover the time dynamics of the output. In this document we provide a specification for a common interface to backends (simulators and experiments) and a standarized data structure (Qobj | quantum object) for sending experiments to those backends via Qiskit. We also introduce OpenPulse, a language for specifying pulse level control (i.e. control of the continuous time dynamics) of a general quantum device independent of the specific arXiv:1809.03452v1 [quant-ph] 10 Sep 2018 hardware implementation. ∗[email protected] 1 Contents 1 Introduction3 1.1 Intended Audience . .4 1.2 Outline of Document . .4 1.3 Outside of the Scope . .5 1.4 Interface Language and Schemas . .5 2 Qiskit API5 2.1 General Overview of a Qiskit Experiment . .7 2.2 Provider . .8 2.3 Backend . -
Quantum Computing: Principles and Applications
Journal of International Technology and Information Management Volume 29 Issue 2 Article 3 2020 Quantum Computing: Principles and Applications Yoshito Kanamori University of Alaska Anchorage, [email protected] Seong-Moo Yoo University of Alabama in Huntsville, [email protected] Follow this and additional works at: https://scholarworks.lib.csusb.edu/jitim Part of the Communication Technology and New Media Commons, Computer and Systems Architecture Commons, Information Security Commons, Management Information Systems Commons, Science and Technology Studies Commons, Technology and Innovation Commons, and the Theory and Algorithms Commons Recommended Citation Kanamori, Yoshito and Yoo, Seong-Moo (2020) "Quantum Computing: Principles and Applications," Journal of International Technology and Information Management: Vol. 29 : Iss. 2 , Article 3. Available at: https://scholarworks.lib.csusb.edu/jitim/vol29/iss2/3 This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Journal of International Technology and Information Management by an authorized editor of CSUSB ScholarWorks. For more information, please contact [email protected]. Journal of International Technology and Information Management Volume 29, Number 2 2020 Quantum Computing: Principles and Applications Yoshito Kanamori (University of Alaska Anchorage) Seong-Moo Yoo (University of Alabama in Huntsville) ABSTRACT The development of quantum computers over the past few years is one of the most significant advancements in the history of quantum computing. D-Wave quantum computer has been available for more than eight years. IBM has made its quantum computer accessible via its cloud service. Also, Microsoft, Google, Intel, and NASA have been heavily investing in the development of quantum computers and their applications. -
COVID-19 Detection on IBM Quantum Computer with Classical-Quantum Transfer Learning
medRxiv preprint doi: https://doi.org/10.1101/2020.11.07.20227306; this version posted November 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Turk J Elec Eng & Comp Sci () : { © TUB¨ ITAK_ doi:10.3906/elk- COVID-19 detection on IBM quantum computer with classical-quantum transfer learning Erdi ACAR1*, Ihsan_ YILMAZ2 1Department of Computer Engineering, Institute of Science, C¸anakkale Onsekiz Mart University, C¸anakkale, Turkey 2Department of Computer Engineering, Faculty of Engineering, C¸anakkale Onsekiz Mart University, C¸anakkale, Turkey Received: .201 Accepted/Published Online: .201 Final Version: ..201 Abstract: Diagnose the infected patient as soon as possible in the coronavirus 2019 (COVID-19) outbreak which is declared as a pandemic by the world health organization (WHO) is extremely important. Experts recommend CT imaging as a diagnostic tool because of the weak points of the nucleic acid amplification test (NAAT). In this study, the detection of COVID-19 from CT images, which give the most accurate response in a short time, was investigated in the classical computer and firstly in quantum computers. Using the quantum transfer learning method, we experimentally perform COVID-19 detection in different quantum real processors (IBMQx2, IBMQ-London and IBMQ-Rome) of IBM, as well as in different simulators (Pennylane, Qiskit-Aer and Cirq). By using a small number of data sets such as 126 COVID-19 and 100 Normal CT images, we obtained a positive or negative classification of COVID-19 with 90% success in classical computers, while we achieved a high success rate of 94-100% in quantum computers. -
Qubit Coupled Cluster Singles and Doubles Variational Quantum Eigensolver Ansatz for Electronic Structure Calculations
Quantum Science and Technology PAPER Qubit coupled cluster singles and doubles variational quantum eigensolver ansatz for electronic structure calculations To cite this article: Rongxin Xia and Sabre Kais 2020 Quantum Sci. Technol. 6 015001 View the article online for updates and enhancements. This content was downloaded from IP address 128.210.107.25 on 20/10/2020 at 12:02 Quantum Sci. Technol. 6 (2021) 015001 https://doi.org/10.1088/2058-9565/abbc74 PAPER Qubit coupled cluster singles and doubles variational quantum RECEIVED 27 July 2020 eigensolver ansatz for electronic structure calculations REVISED 14 September 2020 Rongxin Xia and Sabre Kais∗ ACCEPTED FOR PUBLICATION Department of Chemistry, Department of Physics and Astronomy, and Purdue Quantum Science and Engineering Institute, Purdue 29 September 2020 University, West Lafayette, United States of America ∗ PUBLISHED Author to whom any correspondence should be addressed. 20 October 2020 E-mail: [email protected] Keywords: variational quantum eigensolver, electronic structure calculations, unitary coupled cluster singles and doubles excitations Abstract Variational quantum eigensolver (VQE) for electronic structure calculations is believed to be one major potential application of near term quantum computing. Among all proposed VQE algorithms, the unitary coupled cluster singles and doubles excitations (UCCSD) VQE ansatz has achieved high accuracy and received a lot of research interest. However, the UCCSD VQE based on fermionic excitations needs extra terms for the parity when using Jordan–Wigner transformation. Here we introduce a new VQE ansatz based on the particle preserving exchange gate to achieve qubit excitations. The proposed VQE ansatz has gate complexity up-bounded to O(n4)for all-to-all connectivity where n is the number of qubits of the Hamiltonian. -
Arxiv:1812.09167V1 [Quant-Ph] 21 Dec 2018 It with the Tex Typesetting System Being a Prime Example
Open source software in quantum computing Mark Fingerhutha,1, 2 Tomáš Babej,1 and Peter Wittek3, 4, 5, 6 1ProteinQure Inc., Toronto, Canada 2University of KwaZulu-Natal, Durban, South Africa 3Rotman School of Management, University of Toronto, Toronto, Canada 4Creative Destruction Lab, Toronto, Canada 5Vector Institute for Artificial Intelligence, Toronto, Canada 6Perimeter Institute for Theoretical Physics, Waterloo, Canada Open source software is becoming crucial in the design and testing of quantum algorithms. Many of the tools are backed by major commercial vendors with the goal to make it easier to develop quantum software: this mirrors how well-funded open machine learning frameworks enabled the development of complex models and their execution on equally complex hardware. We review a wide range of open source software for quantum computing, covering all stages of the quantum toolchain from quantum hardware interfaces through quantum compilers to implementations of quantum algorithms, as well as all quantum computing paradigms, including quantum annealing, and discrete and continuous-variable gate-model quantum computing. The evaluation of each project covers characteristics such as documentation, licence, the choice of programming language, compliance with norms of software engineering, and the culture of the project. We find that while the diversity of projects is mesmerizing, only a few attract external developers and even many commercially backed frameworks have shortcomings in software engineering. Based on these observations, we highlight the best practices that could foster a more active community around quantum computing software that welcomes newcomers to the field, but also ensures high-quality, well-documented code. INTRODUCTION Source code has been developed and shared among enthusiasts since the early 1950s. -
Building Your Quantum Capability
Building your quantum capability The case for joining an “ecosystem” IBM Institute for Business Value 2 Building your quantum capability A quantum collaboration Quantum computing has the potential to solve difficult business problems that classical computers cannot. Within five years, analysts estimate that 20 percent of organizations will be budgeting for quantum computing projects and, within a decade, quantum computing may be a USD15 billion industry.1,2 To place your organization in the vanguard of change, you may need to consider joining a quantum computing ecosystem now. The reality is that quantum computing ecosystems are already taking shape, with members focused on how to solve targeted scientific and business problems. Joining the right quantum ecosystem today could give your organization a competitive advantage tomorrow. Building your quantum capability 3 The quantum landscape Quantum computing is gathering momentum. By joining a burgeoning quantum computing Today, major tech companies are backing ecosystem, your organization can get a head What is quantum computing? sizeable R&D programs, venture capital funding start today. Unlike “classical” computers, has grown to at least $300 million, dozens of quantum computers can represent a superposition of multiple states at startups have been founded, quantum A quantum ecosystem brings together business the same time. This characteristic is conferences and research papers are climbing, experts with specialists from industry, expected to provide more efficient research, academia, engineering, physics and students from 1,500 schools have used quantum solutions for certain complex business software development/coding across the computing online, and governments, including and scientific problems, such as drug China and the European Union, have announced quantum stack to develop quantum solutions and materials development, logistics billion-dollar investment programs.3,4,5 that solve business and science problems that and artificial intelligence. -
Arxiv:2103.11307V1 [Quant-Ph] 21 Mar 2021
QuClassi: A Hybrid Deep Neural Network Architecture based on Quantum State Fidelity Samuel A. Stein1,4, Betis Baheri2, Daniel Chen3, Ying Mao1, Qiang Guan2, Ang Li4, Shuai Xu3, and Caiwen Ding5 1 Computer and Information Science Department, Fordham University, {sstein17, ymao41}@fordham.edu 2 Department of Computer Science, Kent State University, {bbaheri, qguan}@kent.edu 3 Computer and Data Sciences Department,Case Western Reserve University, {txc461, sxx214}@case.edu 4 Pacific Northwest National Laboratory (PNNL), Email: {samuel.stein, ang.li}@pnnl.gov 5 University of Connecticut, Email: [email protected] Abstract increasing size of data sets raises the discussion on the future of DL and its limitations [42]. In the past decade, remarkable progress has been achieved in In parallel with the breakthrough of DL in the past years, deep learning related systems and applications. In the post remarkable progress has been achieved in the field of quan- Moore’s Law era, however, the limit of semiconductor fab- tum computing. In 2019, Google demonstrated Quantum rication technology along with the increasing data size have Supremacy using a 53-qubit quantum computer, where it spent slowed down the development of learning algorithms. In par- 200 seconds to complete a random sampling task that would allel, the fast development of quantum computing has pushed cost 10,000 years on the largest classical computer [5]. Dur- it to the new ear. Google illustrates quantum supremacy by ing this time, quantum computing has become increasingly completing a specific task (random sampling problem), in 200 available to the public. IBM Q Experience, launched in 2016, seconds, which is impracticable for the largest classical com- offers quantum developers to experience the state-of-the-art puters. -
Quantum Approximation for Wireless Scheduling
applied sciences Article Quantum Approximation for Wireless Scheduling Jaeho Choi 1 , Seunghyeok Oh 2 and Joongheon Kim 2,* 1 School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Korea; [email protected] 2 School of Electrical Engineering, Korea University, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3290-3223 Received: 2 September 2020; Accepted: 6 October 2020; Published: 13 October 2020 Abstract: This paper proposes an application algorithm based on a quantum approximate optimization algorithm (QAOA) for wireless scheduling problems. QAOA is one of the promising hybrid quantum-classical algorithms to solve combinatorial optimization problems and it provides great approximate solutions to non-deterministic polynomial-time (NP) hard problems. QAOA maps the given problem into Hilbert space, and then it generates the Hamiltonian for the given objective and constraint. Then, QAOA finds proper parameters from the classical optimization loop in order to optimize the expectation value of the generated Hamiltonian. Based on the parameters, the optimal solution to the given problem can be obtained from the optimum of the expectation value of the Hamiltonian. Inspired by QAOA, a quantum approximate optimization for scheduling (QAOS) algorithm is proposed. The proposed QAOS designs the Hamiltonian of the wireless scheduling problem which is formulated by the maximum weight independent set (MWIS). The designed Hamiltonian is converted into a unitary operator and implemented as a quantum gate operation. After that, the iterative QAOS sequence solves the wireless scheduling problem. The novelty of QAOS is verified with simulation results implemented via Cirq and TensorFlow-Quantum. -
Off-The-Shelf Components for Quantum Programming and Testing
Off-the-shelf Components for Quantum Programming and Testing Cláudio Gomesa, Daniel Fortunatoc, João Paulo Fernandesa and Rui Abreub aCISUC — Departamento de Engenharia Informática da Universidade de Coimbra, Portugal bFaculty of Engineering of the University of Porto, Portugal cInstituto Superior Técnico, University of Lisbon, Portugal Abstract In this position paper, we argue that readily available components are much needed as central contribu- tions towards not only enlarging the community of quantum computer programmers, but also in order to increase their efficiency and effectiveness. We describe the work we intend to do towards providing such components, namely by developing and making available libraries of quantum algorithms and data structures, and libraries for testing quantum programs. We finally argue that Quantum Computer Programming is such an effervescent area that synchronization efforts and combined strategies within the community are demanded to shorten the time frame until quantum advantage is observed and can be explored in practice. Keywords Quantum Computing, Software Engineering, Reusable Components 1. Introduction There is a large body of compelling evidence that Computation as we have known and used for decades is under challenge. As new models for computation emerge, its limits are being pushed beyond what pragmatically had been seen in practice. In this line, Quantum Computing (QC) has received renewed worldwide attention. Having its foundations been thoroughly studied, mainly from the point of view of its physical implementation, their potential has, even if preliminarily, is currently being witnessed. A quantum computer can potentially solve various problems that a classical computer cannot solve efficiently; this is known as Quantum Supremacy. -
Student User Experience with the IBM Qiskit Quantum Computing Interface
Proceedings of Student-Faculty Research Day, CSIS, Pace University, May 4th, 2018 Student User Experience with the IBM QISKit Quantum Computing Interface Stephan Barabasi, James Barrera, Prashant Bhalani, Preeti Dalvi, Ryan Kimiecik, Avery Leider, John Mondrosch, Karl Peterson, Nimish Sawant, and Charles C. Tappert Seidenberg School of CSIS, Pace University, Pleasantville, New York Abstract - The field of quantum computing is rapidly Schrödinger [11]. Quantum mechanics states that the position expanding. As manufacturers and researchers grapple with the of a particle cannot be predicted with precision as it can be in limitations of classical silicon central processing units (CPUs), Newtonian mechanics. The only thing an observer could quantum computing sheds these limitations and promises a know about the position of a particle is the probability that it boom in computational power and efficiency. The quantum age will be at a certain position at a given time [11]. By the 1980’s will require many skilled engineers, mathematicians, physicists, developers, and technicians with an understanding of quantum several researchers including Feynman, Yuri Manin, and Paul principles and theory. There is currently a shortage of Benioff had begun researching computers that operate using professionals with a deep knowledge of computing and physics this concept. able to meet the demands of companies developing and The quantum bit or qubit is the basic unit of quantum researching quantum technology. This study provides a brief information. Classical computers operate on bits using history of quantum computing, an in-depth review of recent complex configurations of simple logic gates. A bit of literature and technologies, an overview of IBM’s QISKit for information has two states, on or off, and is represented with implementing quantum computing programs, and two a 0 or a 1.