Sericin, a Dietary Additive: Mini Review Snehashish Ghosh, Roopa S

Total Page:16

File Type:pdf, Size:1020Kb

Sericin, a Dietary Additive: Mini Review Snehashish Ghosh, Roopa S Journal of Medicine, Radiology, Pathology & Surgery (2019), 6, 4–8 REVIEW ARTICLE Sericin, a dietary additive: Mini review Snehashish Ghosh, Roopa S. Rao, K. Shwetha Nambiar, Vanishri C. Haragannavar, Dominic Augustine, S. V. Sowmya Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India Keywords: Abstract Food, nutrition, sericin Realization of the nutritive value of silk and silk protein sericin is essential to exploit its compatibility and value added potential. Sericin, a globular protein, obtained from Correspondence: Dr. K. Shwetha Nambiar, Department of Oral cocoons, as a part of the refining process. It has a wide array of applications in food Pathology and Microbiology, industry, pharmaceuticals, molecular biology, cosmetics, and textile industry. Dietary Faculty of Dental Sciences, M. S. Ramaiah intake of sericin reduces the levels of serum cholesterols and triglyceride. Furthermore, University of Applied Sciences, exhibits antioxidant activity by inhibiting tyrosinase enzyme. The nutritive value of Bengaluru - 560 054, Karnataka, India. sericin is explored in countries such as Japan and China. Although sericin is exploited E-mail: [email protected] in India in cosmetic industry, textiles, and pharmaceutical industry, it has not been explored in the food industry. Sericin is a unique protein; its rate of production is high, Received: 02 November 2018; as enormous amount of silk is generated in India and most goes for waste. Instead, it Accepted: 26 December 2018 can be utilized into a dietary additive in the food industry. The aim of this review article is to highlight the nutritional benefits of sericin and how best it can be utilized in food doi: 10.15713/ins.jmrps.153 industry as a dietary additive for the health benefits. Introduction high serine content. Different amino acids present in sericin are serine (30-39%), glycine (14-16%), asparagine acid 6 (11-15%), The word sericin is derived from a Latin word “sericum” and threonine (8-10%). The total content of amino acids with meaning silk.[1] Silk is obtained from silkworm Bombyx mori, [2] a hydroxyl groups (-OH), including serine and threonine comprising two proteins sericin and fibroin. In Sanskrit, comprises about 40%. The acidic amino acids having carboxyl silk is popularly known as “Kitta-Sutram.” The word “kitta” groups (-COOH) and basic amino acids having amino groups means worm, and “sutram” means thread.[3] About 1 million (-NH2) are also high. The polar side chain amino acid content is tons of fresh weight cocoons produced worldwide and over 80%. Most of the chemical structure of sericin is still unclear, approximately 4,00,000 tons of dry cocoons are generated, but sericin is likely to have many hydrophilic groups (with a high that produce around 50,000 tons of recoverable sericin. polarity) as side chains.[6] India produces around 1600 tons of silk every year, leaving behind approximately 250-300 tons of sericin.[2,4] The glue-like protein secreted from the mid-region of the silk Forms of Sericin[7] gland, functions as a binder of the fiber. Presently, sericin is Sericin can be classified into three forms based on their solubility underutilized and mostly discarded as a degumming solution as Sericin A, Sericin B, and Sericin C. causing environmental hazard due to its soaring oxygen [5,6] demand for degeneration of microorganisms. Sericin A It has been reported that sericin if utilized properly has wide range of functions varying from useful food element, Consists of the outermost layer and insoluble in hot water. It applications in cosmetic industry and in medical field.[2,5,7] contains 17.2% nitrogen and amino acids such as threonine, Various applications of sericin have been listed in Table 1. glycine, serine, and aspartic acid. Sericin B Sericin-structure Consists of the middle layer, which on hydrolysis with acid yields Sericin consists of polypeptides with molecular weight of 400, the same amino acid of Sericin A, and tryptophan. It contains 250 and 150 kDa. It has a unique amino acid composition with about 16.8% of nitrogen. 4 Journal of Medicine, Radiology, Pathology & Surgery ● Vol. 6:1 ● Jan-Feb 2019 Dietary sericin Ghosh, et al. Table 1: Applications of sericin[7,21] Skin Hair Food industry Fabrics Medicinal uses Other uses Combat melanin, and Repair damaged hair Combat constipation In fabrics to absorb Biomaterial to Treating industrial whiten skin by providing basic and obesity moisture contradict cold wastewater with nutrients adsorptive pollutants Protect skin and increases Protect hair In porridge, to improve Cleaning fabrics Tonics rich in amino skin elasticity its taste and touch acids Preserves and maintains Hair conditioner Beverage rich in amino Improved Development of contact moisture of skin can be acids antibacterial activity lenses used in foundation creams and eyeliners Prevents wrinkles and Shampoo containing Edible antioxidant used To develop durable Suppresses development aging of skin sericin and pelarogenic in greasy food. Prevents and bioactive finish of bowel cancer and acid of pH<6 are useful browning reactions of on polyester for use colon tumors has for hair cleaning various foods in medical and sports antitumor properties garments Antioxidant used in Antioxidant applied in Wound healing cosmetics dairy products properties Additive applied in Accelerates the cosmetics to ameliorate its absorption of minerals guarantee period Additive as nourishment In nail cosmetics, prevents nail from chapping and brittleness Sericin C Table 2: Properties of sericin[7,8] Consists of the deepest layer, which lies adjacent to fibroin and is Attributes Properties insoluble in warm water. It is separated from fibroin by treating Characteristics White/yellow, water, soluble, odor free, and sweet in taste. Moisture content is 10‑17% with hot dilute acid or alkali. On acid hydrolysis it yields proline and amino acids present in sericin B. It also contains about 16.6% Morphology Wrinkled particles due to collapse of hollow spherical structures on rapid evaluation of nitrogen.[5,7] Sericin can also be classified based on the color of cocoons Molecular weight Ranges from 17100 to 18460 or 90‑125 KDa from which it is obtained. White sericin is the low viscosity Solubility Insoluble in cold water, soluble in hot water. sericin. Yellow sericin, is the one which is medium viscosity Solubility increases with addition of polyacrylate sericin, used in salad dressing. Yellow-green sericin, is the and decreases with addition of formaldehyde high viscosity sericin, contains flavonol pigments, which has Isoelectric pH As it contains more of basic amino acids, its antioxidative property, which is mostly incorporated in baking isoelectric pH is 4.0 [5,7,8] of bread. The properties of sericin are mentioned in Table 2. Sol‑gel transition It gets transformed to fluid at 50‑60°C and returns to gel form on cooling Sericin-extraction Extraction with the aid of heat Extraction of sericin with enzymes Sericin belongs to the category of structural glue proteins Extraction is carried out using enzyme alkylase or alkaline synthesized within the silk gland cells and secreted into the lumen protease at 60°C for 90 min, at a pH 10. Following which, of the gland. Presently, sericin is obtained from cocoon when the hydrolysis is done with trypsin for the retrieval of sericin.[9] raw silk is processed into fibers. Sericin in the cocoon layers is extracted with hot water or mildly alkaline solution. Apart from Proteins and its Importance the proteins, many other constituents such as carbohydrates, wax, pigments, and minerals are also present in layers. Of these Proteins are the biomolecules or macromolecules comprising constituents, the lower molecular weight accumulates along a chain of amino acids. It has wide spectrum of functions with sericin layers and emerges when sericin is extracted. Sericin ranging from catalyzing various biochemical reactions, sample is prepared by dialysis of this extract fluid which removes transport of biomolecules, DNA replication and many more. the low molecular weight components, except the pigments, The recommended dietary allowance (RDA) for proteins followed by freeze-drying.[7] is 0.8 mg/kg of body weight. If protein is consumed more than Journal of Medicine, Radiology, Pathology & Surgery ● Vol. 6:1 ● Jan-Feb 2019 5 Ghosh, et al. Dietary sericin 1.5 mg/kg of body weight, which is almost the twice of RDA for the oxidation of fatty acids. The suppressive effect of sericin for proteins causes oxidative stress on the kidney, increases on free fatty acids is associated with increased peripheral glucose glomerular filtration rate, hypertrophy of the contralateral uptake, bringing about a better glucose tolerance. It has been kidney and can lead to formation of renal calculi.[10,11] reported that a dietary addition of 2% sericin, significantly Whereas, decreased protein intake can lead to growth reduces the oxidative stress in rats. Recently, it has been found retardation, reduced osmotic pressure causing extravasation of that sericin increases the antioxidant activity in rats by inhibiting fluid to the interstitium, leading to edema. Decreased protein tyrosinase.[13,15] It has an anti-constipative effects, as it causes intake can lead to malnutrition in children and can affect the increased excretion of fecal nitrogen, thereby causing increased growth, intelligence and several other functions in children. evacuation in rats.[16,17] Furthermore, sericin increases intestinal Sericin is a treasure, as it is generated free of cost and if utilized absorption of various trace elements such as zinc, magnesium, properly can combat the protein-energy malnutrition in and iron, and the resultant is increase in bioavailability of these India.[12,13] substances.[10] Sericin is also an anti-frosting agent, and coating In oral cancer, the requirement of protein increases, and it of it if applied on raw fruits and vegetables can prevent them becomes difficult for the patients of low socioeconomic class from freezing.[8] The composition of sericin food grade powder to combat with the needs.
Recommended publications
  • Properties of Sericin Films Crosslinking with Dimethylolurea
    PROPERTIES OF SERICIN FILMS CROSSLINKING WITH DIMETHYLOLUREA. Franciele R. B. Turbiani1*, José Tomadon Jr.2, Fernanda L. Seixas2, Gylles Ricardo Ströher1, Marcelino L. Gimenes2 1 - Federal Technology University - UTFPR, Campus Apucarana, Apucarana - PR 2 - State University of Maringá – UEM, Campus Maringá, Maringá - PR [email protected] Abstract: Sericin is a natural silk protein which is removed from silk in a process called degumming. Thus, finding a use for the extracted sericin as a biopolymer film will create added value product which will benefit both the economy and society. The films were manufactured with silk sericin, using different dimethylolurea (DMU) concentrations as cross-linking agent and glycerol as plasticizer. Sericin films produced by crosslinking method were light yellow, homogeneous, transparent and visually attractive. The average film thickness was 0.10 ± 0.02 mm. The biofilms show low water solubility (up to 30% of total dry mass), good tension strength and high elongation ability. The water vapor permeability is moderate, typical of highly hydrophilic films. Structural transformations in silk sericin films were analyzed using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and X-ray diffraction. This resulted in aggregated -sheet structure (peak at 1616 cm-1 in the amide I absorption) by FTIR studies and increasing the DMU concentration in film decreased the peak intensity at 2 = 20º. Sericin-based film properties are dependent on components used to form film, which can used to tailor the desired film flexibility and minimize permeability of films. Keywords : sericin, biofilms, crosslinking, gelification. Introduction Sericin is a highly hydrophilic macromolecular protein comprising of 18 amino acids.
    [Show full text]
  • Sericin: Structure and Properties
    1 1 Sericin: Structure and Properties 1.1 Type of Silk Sericin Sericin is a natural product from the silkworm. Sericin is one of the major protein compo- nents in the cocoons of Lepidopteron insects. Sericin is a glue-like coating protein sur- rounded with filament protein, fibroin (Figure 1.1). In manufacturing silk, sericin is a waste product from the degumming process. The silk sericin is classified into two types based on the feeding source of the silkworms: mulberry and non-mulberry sericin. The mulberry silkworm, Bombyx mori, is a well-known source of commercial silk production. This worm is a completely domesticated species that feeds on mulberry leaves. B. mori had long been developed for an indoor cultivation for the silk industry, whereas non-mulberry silkworm or wild silkworm is the group that feeds on other leaves such as oak leaves and castor oil leaves. Most of the non-mulberry silkworms cannot be reared indoors for their whole life cycles. The well-known non-mulberry silkworms are Antheraea, Samia ricini (or Philosamia ricini), and Cricula trifenestrata. Antheraea is a genus of silkworm that feeds on oak leaves and produces “tasar” silk, such as Antheraea assamensis (producing muka silk), Antheraea mylitta, Antheraea pernyi, and Antheraea yamamai. S. ricini produces the famous “eri” silk. In the wild environment, S. ricini feeds on castor oil plant leaves. C. trifen- estrata is a wild silkworm producing “cricula” silk. The diversity of silkworm sources (genus, species, and diet) may produce distinct sericin characteristics. 1.2 Localization of Silk Sericin Sericin is located at several sites of silkworms and cocoons.
    [Show full text]
  • Possibilities for Using Silkworm and Mulberry for Non-Textile Purposes”
    First Balkan workshop “Possibilities for Using Silkworm and Mulberry for Non-Textile Purposes” PROCEEDINGS 23 – 26 September 2008, Plovdiv, Bulgaria TABLE OF CONTENTS Organizing committee…………………………………………………………………..….......3 Programme…………………………………………………………………………………......3 List of participants……………………………………………………………………………..4 Plenary paper “Global trends in mulberry and silkworm use for non – textile purposes” by Maria Ichim, Doina Tanase, Panomir Tzenov & Dimitar Grekov……………………..…………………………………….6 “Mulberry biomass in Bulgaria” by Zdravko Petkov & Panomir Tzenov……………..…….37 “Special features of fruits from some local mulberry varieties and possibilities for their utilization” by Zdravko Petkov…………………………………………….…………..…….42 Correlation between ISSR makers and cocoon quality in a mulberry silkworm, Bombyx mori L. by Nguyen Thi Thanh Binh & Krasimira Malinova./…………………….….……………48 2 Organizing committee: President: Assoc. Prof. Dimitar Grekov, PhD – Rector, Agricultural University, Plovdiv, Bulgaria Members: 1. Assoc. Prof. Panomir Tzenov, PhD – BACSA President and Director of SES – Vratza, Bulgaria 2. Dr Maria Ichim – Director, Bioengineering, Biotechnology and Environment Protection Institute – BIOING S. A, Bucharest, Romania 3. Dr Evripidis Kipriotis – Director, Agricultural Research Station, Komotini, Greece 4. Mr. Ayhan Karagozoglu – General Manager, Sericultural cooperative Kozabirlik, Bursa, Turkey Venue and Dates: Agricultural University, Plovdiv, Bulgaria Programme: DAY 1 (Tuesday 23 September 2008) Arrival to Plovdiv 20.00 – Welcoming dinner DAY 2 (Wednesday 24 September 2008) Place: Agricultural University, Plovdiv 9.00 – 10.00 Registration 10.00 - 10.15 Opening – Assoc. Prof. Dimitar Grekov, PhD – Rector, Agricultural University, Plovdiv, Bulgaria 10.15 - 11.00 Plenary lecture: “Global trends in mulberry and silkworm use for non – textile purposes” by M. Ichim, D. Tanase, P. Tzenov and D. Grekov 11.00 - 11.30 Session for scientific articles 11.30 – 13.00 Round table discussion on the mulberry and silkworm products use for non – textile purposes.
    [Show full text]
  • Sericin 4.5 CL Sericin 4.5 CL Is…
    Sericin 4.5 CL Sericin 4.5 CL is…. Sericin 4.5 CL is a high molecular weight and water soluble sericin isolated from the silk cocoon for anti-aging cosmetic applications. INCI Name : Sericin Efficacies : Moisturizing Cell proliferation and migration Collagen synthesis promotion Hair coating and nutrition Scalp care Recommend dosage : 0.5 ~ 5% Sericin 4.5 CL is…. • Water-binding capacity • Protective film formation on skin and hair • Nutrition to skin and hair Skin care Hair care Body care • Healthy and glossy hair • Smooth, soft and moist skin Cocoon Bave and Silk Silk cocoon, the source of Sericin 4.5%, is from silkworm which is also called as “the worm of sky” in the orient. Silk cocoon is an oval-shaped cocoon made from the silk of silkworm. There are 2 fibroins in a strand of cocoon bave and each fibroin is wrapped in sericin. Silk cocoon itself is a natural protein composed of various amino acids. Composition of silk Component Contents(%) Fibroin 70 ~ 80 Sericin 20 ~ 30 Wax & Fats 0.4 ~ 0.8 Carbohydrate 1.2 ~1.6 Pigment ≒0.2 Inorganic matter ≒0.7 Sericin and Fibroin in silk Silk consists of two types of proteins, fibroin and sericin. Fibroin is the structural center of the silk while sericin is the sticky material surrounding fibroin. Sericin is a type of protein created by Bombyx mori(silkworms) in the production of silk. Sericin contributes about 20-30% of total cocoon weight. It is characterized by its high content of serine and 18 amino acids, including essential amino acids.
    [Show full text]
  • Extraction and Antioxidant Activity of Sericin, a Protein from Silk Extração E Atividade Antioxidante Da Sericina, Uma Proteína Da Seda
    REVIEW ARTICLE Extraction and antioxidant activity of sericin, a protein from silk Extração e atividade antioxidante da sericina, uma proteína da seda Gabriela Andrea Miguel1 , Catalina Álvarez-López2* 1Universidad Pontificia Bolivariana, Medellín - Colombia 2Universidad Pontificia Bolivariana, Facultad de Ingeniería Agroindustrial, Grupo de Investigaciones Agroindustriales, Medellín - Colombia *Corresponding Author: Catalina Álvarez-López, Universidad Pontificia Bolivariana, Facultad de Ingeniería Agroindustrial, Grupo de Investigaciones Agroindustriales, Circular 1 # 70-01, Bloque 11, Piso 3, Medellín - Colombia, e-mail: [email protected] Cite as: Miguel, G. A., & Álvarez-López, C. (2020). Extraction and antioxidant activity of sericin, a protein from silk. Brazilian Journal of Food Technology, 23, e2019058. https://doi.org/10.1590/1981-6723.05819 Abstract Sericin is a globular protein that represents 20% to 30% of the silk fiber from Bombyx mori silkworm cocoon. This protein is usually removed from the raw fiber and discarded by silk producers, a process known as degumming. However, sericin possesses significant biological properties that allows its application in various fields. The antioxidant activity is one of its most relevant benefits. Several authors have reported its anti-tyrosinase activity, lipid peroxidation inhibition and free radical neutralization. The antioxidant potential of sericin protein varies according to the extraction method used. Even though a wide variety of extraction techniques have been studied, simple technics including water at high temperature have exhibited efficient results. Furthermore, this method does not interfere with the safety of sericin for subsequent applications in food. Keywords: Bombyx mori; Degumming; Biological properties; Food application; Oxidative stress; Tyrosinase activity; Lipid oxidation. Resumo A sericina é uma proteína globular que representa entre 20% e 30% da fibra do bicho-da-seda Bombyx mori.
    [Show full text]
  • Protein-Based Autofluorescent Hydrogel and Nano/Micro-Particles for Bio-Imaging Applications Xiaoyu Ma University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 9-7-2017 Protein-based Autofluorescent Hydrogel and Nano/Micro-Particles for Bio-imaging Applications Xiaoyu Ma University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Ma, Xiaoyu, "Protein-based Autofluorescent Hydrogel and Nano/Micro-Particles for Bio-imaging Applications" (2017). Doctoral Dissertations. 1620. https://opencommons.uconn.edu/dissertations/1620 Protein-based Autofluorescent Hydrogel and Nano/Micro- Particles for Bio-imaging Applications Xiaoyu Ma, PhD University of Connecticut, 2017 Fluorescent polymeric materials such as hydrogels and polymeric particles have been attracting attention in many biomedical applications including bio-imaging, optical sensing, tissue engineering and therapy, due to their good biocompatibility, biodegradability, and advanced optical property. This PhD project aims at developing novel autofluorescent protein materials in different configurations with good biocompatibility and biodegradability for bio-imaging applications. Early research focused on the development of autofluorescent protein hydrogels for in vivo bio- imaging application. Glutaraldehyde cross-linked Bovine Serum Albumin (BSA) hydrogel were facilely prepared. Various advanced techniques were employed to characterize the as-prepared material. SEM study clearly revealed its 3-dimentional pore structure, while UV-vis spectra
    [Show full text]
  • Safety Assessment of Silk Protein Ingredients As Used in Cosmetics
    Safety Assessment of Silk Protein Ingredients as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: August 28, 2015 Panel Date: September 21-22, 2015 The 2015 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This report was prepared by Wilbur Johnson, Jr., M.S., Senior Scientific Analyst. © Cosmetic Ingredient Review 1620 L STREET, NW, SUITE 1200 ◊ WASHINGTON, DC 20036-4702 ◊ PH 202.331.0651 ◊ FAX 202.331.0088 ◊ [email protected] Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Wilbur Johnson, Jr. Senior Scientific Analyst Date: August 28, 2015 Subject: Draft Tentative Report on Silk Proteins At the June 15-16, 2015 CIR Expert Panel (Panel) meeting, the Panel issued an Insufficient Data Announcement with the following data requests on MEA-Hydrolyzed Silk and Silkworm Cocoon Extract: (1) Method of manufacture and impurities, (2) Concentration of use, (3) 28-day dermal toxicity study; if absorbed, genotoxicity and reproductive and developmental toxicity data may be needed, and (4) Skin irritation and sensitization data. To date, these data have not been received. The Panel also agreed that the available data are sufficient for evaluating the safety of the following ingredients: Fibroin, Hydrolyzed Fibroin, Hydrolyzed Sericin, Hydrolyzed Silk, Sericin, Silk, Silk Extract, and Silk Powder.
    [Show full text]
  • Conformation of Liquid Silk Sericin
    Polymer Journal, Vol. 11, No. 6, pp 503~505 (1979) SHORT COMMUNICATION Conformation of Liquid Silk Sericin Masuhiro TSUKADA, Tadashi KOMOTO,* and Tohru KAWAI* Sericultural Experiment Station, Wada, Suginami-ku, Tokyo 166, Japan. *Department of Polymer Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan. (Received November I, 1978) KEYWORDS Silk / Fibroin / Sericin / Polymer / Conformation / Circular Dichroism / Raw silk fibers consit of mainly two proteins: silk to the method proposed by Greenfield, et al., 10 using fibroin and silk sericin; the latter being secreted from the F ACOM 230-25 computer.11 the middle silk gland of the silkworm. The liquid silk sericin whose content is 25 wt% of the cocoon RES ULTS AND DISCUSSION filament, forms the skin layer of the silk fiber, while the inner core is constituted by fibroin. Since silk The CD spectra ofNd-s silk sericin extracted for 5 fibroin is the major consistute of silk threa9, it has and 45 min respectively have strong negative bands been widely studied. 1 - 3 We are interested in the at 198 nm assig?ed to the random coil conformation conformation of silk sericin, the amino acid com­ of the silk sericin and weak negative bands at ca. position of which was examined by Shimizu, et al.4 '218 nm assigned to the /3-structure. The change in the Studies were also made on conformation,5 molecular magnitude of these negative CD bands with the weight,6 physicochemical properties,7 and crystalli­ extraction time seems to indicate that the random zation8 during the secretion of silk sericin.
    [Show full text]
  • Characterization of Sericin Protein Recovered from Silk Wastewaters
    Araştırma Makalesi/Original Article Türk Hijyen ve Deneysel Biyoloji Dergisi Makale Dili “İngilizce”/Article Language “English” Characterization of sericin protein recovered from silk wastewaters İpek atıksularından geri kazanılan serisin proteininin karakterizasyonu Gökşen ÇAPAR1, Seylan Saniye AYGÜN2 ABSTRACT ÖZET Objective: This study aims to determine the Amaç: Bu çalışmanın amacı, ipek atıksularından characteristics of sericin protein recovered from silk geri kazanılan serisin proteininin özelliklerini wastewaters. belirlemektir. Method: Sericin protein was recovered from silk Yöntem: Orta Doğu Teknik Üniversitesi Mühendislik wastewaters by membrane technology in Engineering Bilimleri Bölümü’nde 2007-2008 yılları arasında ipek Sciences Department of the Middle East Technical atıksuyundan membran teknolojisi ile serisin proteini University between 2007 and 2008. The protein geri kazanılmıştır. Protein karakterizasyon çalışması characterization study was completed in Ankara Ankara Üniversitesi Su Yönetimi Enstitüsü’nde 2012 University Water Management Institute in 2012. The yılında tamamlanmıştır. Geri kazanılan protein recovered protein was characterized in terms of moleküler ağırlık, nem ve kül içeriği, elementel molecular weight, moisture and ash contents, elemental analiz ve amino asit kompozisyonu yönünden and amino acid compositions. Dialysis was adopted to incelenmiştir. Proteinin saflaştırılması için diyaliz işlemi purify the protein. Sericin was extracted from native uygulanmıştır. Serisin kozadan hidrotermal işlemle cocoons
    [Show full text]
  • Extraction and Characterization of Silk Sericin
    Indian Journal of Fibre & Textile Research Vol. 39, December 2014, pp. 364-372 Extraction and characterization of silk sericin Deepti Gupta a, Anjali Agrawal & Abhilasha Rangi Department of Textile Technology, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110 016, India Received 5 October 2013; revised received and accepted 10 February 2014 Study compares the quality and quantity of sericin obtained from four sources, namely mulberry silk cocoons, silk flats, reeling silk waste and woven silk fabric. Sericin has been extracted using the conventional HTHP machine as well as IR heating machine. Results show that among the four sources, the maximum yield of sericin (28%) is obtained from silk fabric followed by 25% sericin obtained from silk flats. IR machine extraction gives ~13 times higher yield of sericin as compared to that obtained by HTHP at 100 0C for 60 min. Sample obtained from IR extraction is also compared with the standard sample in terms of its physical properties, morphological structure, protein quality, protein structure, molecular weight and thermal behaviour using various analytical methods. The study proposes a protocol for assessing the quality of sericin protein. Since the source as well as the method of extraction can affect the properties of sericin, this protocol can be used to assess and determine the quality parameters of various sericin samples. Keywords : Infrared spectroscopy, Mulberry silk, Protein analysis, Sericin, Silk 1 Introduction alkali bath has been attempted using micro, ultra and Fibroin and sericin, along with very small amounts of nano filtration methods 16 . Drying has been carried out waxy substances, mineral salts and coloring matter, are using spray drying 17,18 , freeze drying or tray drying 19 .
    [Show full text]
  • Amino Acid Profile and Biological Properties of Silk Cocoon As
    molecules Article Amino Acid Profile and Biological Properties of Silk Cocoon as Affected by Water and Enzyme Extraction Chuleeporn Bungthong 1 , Colin Wrigley 2, Thanathat Sonteera 3 and Sirithon Siriamornpun 1,* 1 Research Unit of Process and Product Development of Functional Foods, Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Kantarawichai, Mahasarakham 44150, Thailand; [email protected] 2 Queensland Alliance for Agriculture and Food Innovation (QAAFI), University of Queensland, Brisbane, QLD 4072, Australia; [email protected] 3 Managing Director, Siam Natural Products Co., Ltd., Sutthisan Winitchai Road, Samsen Nai, Khet Phaya Thai, Bangkok 10400, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +66-88-747-4136 Abstract: We compared the efficacy for protein extraction of water versus enzymatic extraction. The amino-acid composition, inhibitory activity against enzymes α-amylase and α-glucosidase, and anti-glycation activities of silk protein extract (SPE) were determined. We used water extraction (100 ◦C, six hours) and protease-enzymatic extraction. The microstructure of silk fibers was obviously different after extraction. The results showed that enzymatic extraction gave the greater values of protein content, amino acids, total phenolic content (TPC), and total flavonoid content (TFC), as well as all biological activities parameters tested, but it also provided a more bitter taste in the Citation: Bungthong, C.; Wrigley, C.; extract—contributing amino acids of 51% (arginine, phenylalanine, histidine, valine, tryptophan, Sonteera, T.; Siriamornpun, S. Amino isoleucine, and leucine) and less sweet and umami taste contributing amino acids than did water Acid Profile and Biological Properties extraction, which could be more suitable to be used as concentrated nutraceuticals.
    [Show full text]
  • Extraction, Structural and Functional Properties of Silk Sericin Biopolymer from Bombyx Mori Silk Cocoon Waste Joykrisna Saha, Md
    e e Sci nce Saha et al., J Textile Sci Eng 2019, 9:1 til & x e E T n : g DOI 10.4172/2165-8064.1000390 f o i n l e a e n r r i n u g o Journal of Textile Science & Engineering J ISSN: 2165-8064 Research Article Article OpenOpen Access Access Extraction, Structural and Functional Properties of Silk Sericin Biopolymer from Bombyx mori Silk Cocoon Waste Joykrisna Saha, Md. Ibrahim H. Mondal*, Md. Rezaul Karim Sheikh and Md. Ahsan Habib Department of Applied Chemistry and Chemical Engineering, Polymer and Textile Research Lab, Rajshahi University, Rajshahi, Bangladesh Abstract In the present investigation environment-friendly effective technique was used for silk sericin extraction from waste silk cocoon. Silk sericin powder was extracted from an only boiled water solution of silk cocoons without using any chemicals. Extracted sericin powder was characterized by UV spectrophotometer, Fourier transform infrared (FTIR) and Thermogravimetric Analysis (TGA). The crystalline index and crystallite diameter of silk sericin were investigated by X-ray diffraction (XRD). The crystalline index and crystallite diameters were found 39.66% and 2.179 nm respectively for silk sericin. The functional properties in terms of antimicrobial activity and antioxidant property were also evaluated. The antioxidant activity was evaluated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The results showed that silk sericin had a strong scavenging capacity for DPPH radicals. Keywords: Silk sericin; Extraction; Crystalline index; Antibacterial activity; Antioxidant property Introduction Silk sericin is a natural glow like globular protein derived from Bombyx mori silk cocoon [1-3]. Its chemical structure [4] is shown in Figure 1.
    [Show full text]