Novel Cannabidiol and Anandamide Analogs

Total Page:16

File Type:pdf, Size:1020Kb

Novel Cannabidiol and Anandamide Analogs Novel Cannabidiol and Anandamide Analogs Thesis Presented by Marsha Rebecca D’Souza to The Bouvé Graduate School of Health Sciences in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Medicinal Chemistry NORTHEASTERN UNIVERSITY BOSTON, MASSACHUSETTS March 23rd, 2012 Signature page 1 Northeastern University Bouvé Graduate School of Health Sciences Thesis title: Novel Cannabidiol and Anandamide Analogs Author: Marsha Rebecca D’Souza Program: Medicinal Chemistry Approval for thesis requirement of the Doctor of Philosophy in Medicinal Chemistry Thesis Committee (Chairman) ________________________ Date __________ ________________________ Date __________ ________________________ Date __________ ________________________ Date __________ ________________________ Date __________ Director of the Graduate School _________________________ Date __________ Dean _________________________ Date __________ Copy Deposited in Library _________________________ Date __________ Signature page 2 Northeastern University Bouve' Graduate School of Health Sciences Thesis title: Novel Cannabidiol and Anandamide Analogs Author: Marsha D’Souza Program: Medicinal Chemistry Approval for thesis requirements of the Doctor of Philosophy in Medicinal Chemistry Thesis Committee (Chairman) ________________________ Date ________ ________________________ Date ________ ________________________ Date ________ ________________________ Date ________ ________________________ Date ________ Director of the Graduate School ________________________ Date ________ i Abstract Part I Delta-9-tetrahydrocannabinol (Δ9-THC) and (-)-cannabidiol (CBD) are the major constituents of Cannabis sativa (marijuana). (-)-CBD shares many of Δ9-THC’s therapeutic properties without inducing negative psychotropic effects. These include potential medicinal uses for anti-inflammation, neuroprotection, anxiolytic, anti-nausea and anti-cancer that are all of great therapeutic importance. The clinical potential of (-)- CBD has been realized with the recent approval of Sativex® in Canada, a drug consisting of a 1:1 mixture of Δ9-THC and (-)-CBD for relief of neuropathic and cancer-related pain. Nonetheless, the levorotatory (-)-CBD natural product binds with low affinity to the two principal cannabinoid (CB) G protein-coupled receptors, CB1R and CB2R, whereas the synthetic dextrorotatory (+)-CBD enantiomer binds to both with high (nanomolar) affinity. However, little is known regarding (+)-CBD ligand-binding and functional domains at these receptors, and structure-activity relationship (SAR) data around (+)- CBD is sparse. In this dissertation, a number of high-affinity (+)-CBD analogs have been synthesized in order to explore the SAR. The SAR focused on the side-chain, northern- end, and phenolic hydroxyl pharmacophores of the (+)-CBD prototype. In vitro leads were selected based on their high binding affinity, selectivity as CB2R agonists or CB1R partial agonists, drug-like physicochemical properties, and modulation of in vitro pharmacological activity (cAMP, β-arrestin assays). These leads were profiled in a panel of rodent paradigms for in vivo cannabinergic activity (hypothermia, catalepsy and tail- flick tests). AM9200 was demonstrated to have a longer duration of action as compared to its metabolite, AM9201, whereas (+)-CBD analogs AM9217 and AM9248 were ii (weak) partial agonists active in vivo. AM9252 and AM 9222 showed potent analgesic and hypothermic effects in mice and rats, suggesting agonist activity at both CB1R and CB2R. AM 9252 was also shown to have analgesic effects comparable to synthetic Δ9- THC analog (AM 4054) in non-human primates. Also, in order to obtain structural information regarding the binding site of (+)-CBD analogs with these membrane-bound proteins, pharmacologically active (+)-CBD analogs designed as covalent probes to wild- type and mutant CB1R and CB2R are being profiled to help characterize their binding site(s). Part II Anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) are the two key endocannabinoids that act at CB1R and CB2R to modulate physiological and pathological processes including nociception, inflammation, neuroprotection, feeding behavior, anxiety, memory, and cell proliferation. They are produced “on demand,” are rapidly inactivated by enzymatic hydrolysis, and serve as substrates for oxidative metabolism by cyclooxygenases and lipoxygenases, making it difficult to study directly their in vivo physiology and pharmacology. For the development of novel endocannabinoid templates with potential resistance to hydrolytic and oxidative metabolism, we targeted the methylation of the bis-allylic carbons of the arachidonoyl skeleton. Towards this end, the synthesis and preliminary biological data for the (13S)- methyl-anandamide analog were recently disclosed from our laboratory. This compound was found to have the highest CB1 binding affinity among anandamide analogs to date. Based on this discovery, this dissertation reports the total synthesis of the (10S)- and (10R)-methyl-counterparts. The synthetic approach used was stereospecific, efficient, and iii provided the chiral analogs without the need for resolution. Biological testing showed that (10S)- and (10R)-methyl anandamide analogs bound to CB1 and CB2 with moderate affinity. To explore the binding motifs of the novel (13S)-methyl-substituted arachidonoyl template, the respective tail-modified covalent probes (at C-20) were synthesized and profiled. The covalent probes bound to the CB1R and CB2R with low nanomolar affinity and are currently being tested for their ability to covalently label the CB receptors. iv Acknowledgements I am very excited to have successfully completed my doctorate. This journey has been possible mainly because of my Lord and Savior Jesus, who has been by my side through all my trials and successes. There is nothing that I can do without him. I would like to convey my deepest appreciation to my committee chair, Professor Alexandros Makriyannis, for his support and encouragement throughout this process. The experience and knowledge that I gained from his lab research has motivated me to continue my career in this area. I would also like to express gratitude to my mentor Dr. Spyros Nikas, who has not only taught me excellent chemistry skills, but also trained me to think like a scientist. He has always been there to help me in practicing for presentations, proof reading my thesis and helping me with some of my questions from the classes I took. Dr. David Janero has helped me immensely in proof reading my thesis and has given me excellent suggestions for its improvement. I am also grateful to Dr. Robert Hanson for serving on my thesis committee and providing me suggestions for my thesis. I really appreciate Dr. Andreas Goutopoulos, who took time form his busy schedule to make it for all my committee meetings. He also gave me an industrial perspective on my project and good suggestions for improving my thesis research. I want to thank my lab mates (Megan, Erin, Sherrica, Shukla, Rishi, Shama, Kiran, Kyle and Heidi) who have made this a fun experience. I am very thankful to Dr. Kumar Vadivel for his selfless help. He has always been ever ready to help me in discussing chemistry mechanisms and fixing my presentations. I am grateful to Dr. Jessica Garcia who proofread my chemistry and results section and gave me good input to improve my thesis and presentations. I would like to thank Dr. David Finnegan and Shwantelle Dillon v for proof reading my experimental and introduction. I am truly indebted and thankful to Sarah Strassburg, Shawntelle Dillon and Brett for their help in scheduling meetings. I also want to thank my collaborators, Dr. Jodi Wood, Han Zhou, Dr. Aneetha Halikhedkar, Pusheng Fan, Othman Benchama, SriKrishnan Mallipeddi, Yan Peng, Girija Rajarshi, Shivagi Joshi, Dr. Jarbe, Dr. Dustin Smith, Dr. Aaron Lichtman and Dr. Carol Paronis who have provided me with in vitro and in vivo data. Last but not the least I want to thank my parents for their unconditional support, love and prayers. It is my dad who first encouraged me to get into science and I am really proud that I can call myself a scientist. My mom has never ceased to pray for my smooth sailing through these five years. My brother Helius and my little sisters Malissa and Moira have always been there to advice me in tough times. Words cannot express how thankful I am to my boyfriend Elliott Eno, who has always been there for me during these five years, in good times and in bad times. vi TABLE OF CONTENTS PAGE ABSTRACT .......................................................................................................................... ii ACKNOWLEDGMENT ........................................................................................................... v LIST OF TABLES ................................................................................................................. ix LIST OF FIGURES ................................................................................................................ xi LIST OF SCHEMES ............................................................................................................. xiv LIST OF ABBREVIATIONS .................................................................................................. xvi CHAPTER 1 THE CANNABINOID REALM BACKGROUND ................................................................................ 1 SIGNIFICANCE .............................................................................
Recommended publications
  • Cannabinoids in Dermatology: a Scoping Review
    Volume 24 Number 6| June 2018| Dermatology Online Journal || Review 24(6): 1 Cannabinoids in dermatology: a scoping review Lauren R M Eagelston1 MD, Nazanin Kuseh Kalani Yazd1 BS, Ravi R Patel2 MD, Hania K Flaten1 BS, Cory A Dunnick3,4 MD, Robert P Dellavalle3,4 MD PhD MSPH Affiliations: 1University of Colorado School of Medicine, Aurora, Colorado, USA, 2Gwinnett Medical Center, Lawrenceville, Georgia, USA, 3University of Colorado School of Medicine, Department of Dermatology, Aurora, Colorado, 4Denver Veterans Affairs Medical Center (VAMC), Department of Dermatology, Denver, Colorado Corresponding Author: Robert P. Dellavalle MD PhD MSPH, Professor of Dermatology, Chief of Dermatology Service, Department of Veteran Affairs Medical Center, 1055 Clermont Rm 6A-105 Mail Stop 16, Denver, CO 80220, Tel: 303.339.8020 x2475, Email: [email protected] Introduction Abstract The cannabinoids are a diverse class of The therapeutic applications of cannabis and pharmacologically active compounds that are cannabinoids are an increasingly conspicuous topic structurally and biologically similar to the primary as de-criminalization and legalization of these products continues to expand. A limited number of psychoactive compound derived from Cannabis cannabinoid compounds have been approved for a sativa -tetrahydrocannabinol (THC), [1-4]. There specific set of conditions. However, the current role are three classes of cannabinoids. Endogenous of cannabinoids for the treatment of dermatologic cannabinoids (endocannabinoids) occur conditions remains to be defined. We conducted a naturally/are constitutively produced in the bodies review of the current literature to determine the of humans and animals [3, 5, 6]. The most well-known applications of cannabinoids for the therapy of members of this class include 2-arachidonoyl- various skin diseases.
    [Show full text]
  • Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System
    International Journal of Molecular Sciences Review Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System Shenglong Zou and Ujendra Kumar * Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-827-3660; Fax: +1-604-822-3035 Received: 9 February 2018; Accepted: 11 March 2018; Published: 13 March 2018 Abstract: The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids. Keywords: cannabinoid; endocannabinoid; receptor; signaling; central nervous system 1. Introduction The plant Cannabis sativa, better known as marijuana, has long been used for medical purpose throughout human history.
    [Show full text]
  • N-Acyl-Dopamines: Novel Synthetic CB1 Cannabinoid-Receptor Ligands
    Biochem. J. (2000) 351, 817–824 (Printed in Great Britain) 817 N-acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo Tiziana BISOGNO*, Dominique MELCK*, Mikhail Yu. BOBROV†, Natalia M. GRETSKAYA†, Vladimir V. BEZUGLOV†, Luciano DE PETROCELLIS‡ and Vincenzo DI MARZO*1 *Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy, †Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, R. A. S., 16/10 Miklukho-Maklaya Str., 117871 Moscow GSP7, Russia, and ‡Istituto di Cibernetica, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy We reported previously that synthetic amides of polyunsaturated selectivity for the anandamide transporter over FAAH. AA-DA fatty acids with bioactive amines can result in substances that (0.1–10 µM) did not displace D1 and D2 dopamine-receptor interact with proteins of the endogenous cannabinoid system high-affinity ligands from rat brain membranes, thus suggesting (ECS). Here we synthesized a series of N-acyl-dopamines that this compound has little affinity for these receptors. AA-DA (NADAs) and studied their effects on the anandamide membrane was more potent and efficacious than anandamide as a CB" transporter, the anandamide amidohydrolase (fatty acid amide agonist, as assessed by measuring the stimulatory effect on intra- hydrolase, FAAH) and the two cannabinoid receptor subtypes, cellular Ca#+ mobilization in undifferentiated N18TG2 neuro- CB" and CB#. NADAs competitively inhibited FAAH from blastoma cells. This effect of AA-DA was counteracted by the l µ N18TG2 cells (IC&! 19–100 M), as well as the binding of the CB" antagonist SR141716A.
    [Show full text]
  • N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation Via Nonhematopoietic TRPV1
    N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1 This information is current as Samira K. Lawton, Fengyun Xu, Alphonso Tran, Erika of October 1, 2021. Wong, Arun Prakash, Mark Schumacher, Judith Hellman and Kevin Wilhelmsen J Immunol 2017; 199:1465-1475; Prepublished online 12 July 2017; doi: 10.4049/jimmunol.1602151 http://www.jimmunol.org/content/199/4/1465 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2017/07/12/jimmunol.160215 Material 1.DCSupplemental http://www.jimmunol.org/ References This article cites 69 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/199/4/1465.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 1, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology N-Arachidonoyl Dopamine Modulates Acute Systemic Inflammation via Nonhematopoietic TRPV1 Samira K.
    [Show full text]
  • CBD (Cannabidiol)
    TRANSPORTATION RESEARCH BOARD Driving Toward the Truth - Dispelling the Myths About Cannabis Products February 10, 2021 @NASEMTRB #TRBwebinar PDH Certification The Transportation Research Board has met the standards and Information: requirements of the Registered Continuing Education Providers •1.5 Professional Development Program. Credit earned on completion Hour (PDH) – see follow-up of this program will be reported to email for instructions RCEP. A certificate of completion will •You must attend the entire be issued to participants that have registered and attended the entire webinar to be eligible to receive session. As such, it does not include PDH credits content that may be deemed or •Questions? Contact Reggie construed to be an approval or Gillum at [email protected] endorsement by RCEP. #TRBwebinar Learning Objectives 1. Identify impacts of the Farm Bill on use of THC and CBD products 2. Describe the toxicology of THC and CBD products 3. Discuss how THC and CBD products affect driving performance and crash risk #TRBwebinar TRB Standing Committee on Impairment in Transportation (ACS50) TRB Webinar: Driving Toward the Truth - Dispelling the Myths About Cannabis Products Dr. Barry K. Logan Executive Director, Center for Forensic Science Research and Education (CFSRE); Senior Vice President of Forensic Sciences, and Chief Scientist at NMS Labs Michelle Peace, Ph.D. Associate Professor and PI, Laboratory for Forensic Toxicology Research Department of Forensic Science, Virginia Commonwealth University Dr. Darrin Grondel Vice President,
    [Show full text]
  • Cannabinoids: Novel Molecules with Significant Clinical Utility
    CANNABINOIDS: NOVEL MOLECULES WITH SIGNIFICANT CLINICAL UTILITY NOEL ROBERT WILLIAMS MD FACOG DIRECTOR OPTIMAL HEALTH ASSOCIATES OKLAHOMA CITY, OKLAHOMA How Did We Get Here? • In November 2012 Tikun Olam, an Israeli medical cannabis facility, announced a new strain of the plant which has only CBD as an active ingredient, and virtually no THC, providing some of the medicinal benefits of cannabis without euphoria. The Researchers said the cannabis plant, enriched with CBD, “can be used for treating diseases like rheumatoid arthritis, colitis, liver inflammation, heart disease and diabetes.” Cannabis CBD like in this article is legally derived from the hemp plant. • CBD is the major non-psychoactive component of Cannabis Sativa (Hemp). Hemp plants are selectively developed and grown to contain high amounts of CBD and very low amounts of the psychoactive component THC found in marijuana. A few CBD oil manufacturers further purify their products to contain high amounts of CBD and no THC. 2014 Farm Bill Terminology • Active Ingredient • Zero THC • Cannabidiol • Isolate • PCR – Phytocannabinoid-Rich • Hemp Oil Extract • “Recommendation” vs. “Prescribed” • Full Spectrum Endocannabinoids (AEA) Phytocannabinoids Full Spectrum & Active Ingredient • CBD – Cannabidiol • A major phytocannabinoid, accounting for as much as 85% of the plant’s extract • CBC – Cannabichromene • Anti-inflammatory & anti-fungal effects have been seen • CBG – Cannabigerol • The parent molecule from which many other cannabinoids are made • CBDV – Cannabidivarin • A homolog of CBD that has been reported to have powerful anti-convulsive effects • CBN – Cannabinol • Sleep & Appetite regulation • Terpenes • Wide spectrum of non-psychoactive molecules that are know to act on neural receptors and neurotransmitters, enhance norepinephrine activity, and potentially increases dopamine activity.
    [Show full text]
  • The Use of Cannabinoids in Animals and Therapeutic Implications for Veterinary Medicine: a Review
    Veterinarni Medicina, 61, 2016 (3): 111–122 Review Article doi: 10.17221/8762-VETMED The use of cannabinoids in animals and therapeutic implications for veterinary medicine: a review L. Landa1, A. Sulcova2, P. Gbelec3 1Faculty of Medicine, Masaryk University, Brno, Czech Republic 2Central European Institute of Technology, Masaryk University, Brno, Czech Republic 3Veterinary Hospital and Ambulance AA Vet, Prague, Czech Republic ABSTRACT: Cannabinoids/medical marijuana and their possible therapeutic use have received increased atten- tion in human medicine during the last years. This increased attention is also an issue for veterinarians because particularly companion animal owners now show an increased interest in the use of these compounds in veteri- nary medicine. This review sets out to comprehensively summarise well known facts concerning properties of cannabinoids, their mechanisms of action, role of cannabinoid receptors and their classification. It outlines the main pharmacological effects of cannabinoids in laboratory rodents and it also discusses examples of possible beneficial use in other animal species (ferrets, cats, dogs, monkeys) that have been reported in the scientific lit- erature. Finally, the article deals with the prospective use of cannabinoids in veterinary medicine. We have not intended to review the topic of cannabinoids in an exhaustive manner; rather, our aim was to provide both the scientific community and clinical veterinarians with a brief, concise and understandable overview of the use of cannabinoids in veterinary
    [Show full text]
  • Pharmacodynamics of Cannabinoids
    Open Access Archives of Pharmacy and Pharmaceutical Sciences Review Article Pharmacodynamics of cannabinoids Alexandra Sulcova* ISSN ICCI - International Cannabis and Cannabinoids Institute, Jachymova 26/2, 110 00 Praha, 2639-992X Czech Republic “Pharmacodynamics of cannabinoids “(i.e. a set of biological effects elicited in the *Address for Correspondence: Alexandra Sulcova, M.D, Ph.D, Professor of Pharmacology, living organism by interaction with its biochemical and biophysical functions up to the FCMA, FECNP, FCINP, ICCI - International cellular level) is studied for a long time during both, physiological and pathological Cannabis and Cannabinoids Institute, Jachymova conditions. Cannabinoids received their names according to their natural occurrence 26/2, 110 00 Praha, Czech Republic, Tel: 420 732167678; Email: [email protected] as constituents of Cannabis sativa L. (marijuana). The species was classiied in the “Linnaeus’s Species Plantarum (1753)”, the word “sativa” means things that are Submitted: 12 April 2019 Approved: 07 May 2019 cultivated [1]. For ages, people have used cannabis-based preparations for healing and Published: 08 May 2019 pain suppression until the discovery (in 1897) of aspirin (acetylsalicylic acid) which contemporary medicine uses until today. Chemical investigation of marijuana conirmed Copyright: © 2019 Sulcova A. This is an open access article distributed under the Creative various cannabinoid-type components called cannabinoids (presently estimated at Commons Attribution License, which permits about 150). Regarding their possible pharmacodynamic effects, tetrahydrocannabinol unrestricted use, distribution, and reproduction (THC) and cannabidiol (CBD) are the most explored. The determination of THC structure in any medium, provided the original work is properly cited by means of nuclear magnetic resonance imaging increased sharply the number of professional scientiic reports dealing with the studies of THC pharmacodynamic mechanisms of action [2].
    [Show full text]
  • N-Acyl Amino Acids (Elmiric Acids): Endogenous Signaling Molecules with Therapeutic Potential
    Molecular Pharmacology Fast Forward. Published on November 14, 2017 as DOI: 10.1124/mol.117.110841 This article has not been copyedited and formatted. The final version may differ from this version. MOL #110841 1 MINIREVIEW N-Acyl amino acids (Elmiric Acids): endogenous signaling molecules with therapeutic potential Sumner H. Burstein Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605 Downloaded from molpharm.aspetjournals.org at ASPET Journals on September 30, 2021 Molecular Pharmacology Fast Forward. Published on November 14, 2017 as DOI: 10.1124/mol.117.110841 This article has not been copyedited and formatted. The final version may differ from this version. MOL #110841 2 Running title. N-Acyl amino acids; endogenous signaling molecules Corresponding author: Sumner H. Burstein, Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605 [email protected] Phone: 508-856-2850 FAX: 508-856-2251 Number of of text pages, 26 Number of tables, 3 Downloaded from Number of figures, 4 Number of references, 60 Number of words in the: molpharm.aspetjournals.org Abstract, 220 Introduction, 742 Discussion, 6338 Abbreviations: COX, cyclooxygenase; FAAH, fatty acid amide hydrolase; GABA, γ- at ASPET Journals on September 30, 2021 aminobutyric acid; GPCR, G-protein coupled receptor; LXA4, lipoxin A4 ; LOX, 12,14 lipoxygenases; PGJ,15-deoxy-Δ -prostaglandin-J2 Molecular Pharmacology Fast Forward. Published on November 14, 2017 as DOI: 10.1124/mol.117.110841 This article has not been copyedited and formatted. The final version may differ from this version. MOL #110841 3 Abstract The subject of N-acyl amino acid conjugates has been rapidly growing in recent years, especially with regard to their analgesic and anti-inflammatory actions.
    [Show full text]
  • Noladin Ether, a Putative Novel Endocannabinoid
    FEBS Letters 513 (2002) 294^298 FEBS 25828 View metadata, citation and similar papers at core.ac.uk brought to you by CORE Noladin ether, a putative novel endocannabinoid: inactivationprovided by Elsevier - Publisher Connector mechanisms and a sensitive method for its quanti¢cation in rat tissues Filomena Fezzaa, Tiziana Bisognoa, Alberto Minassib, Giovanni Appendinob, Raphael Mechoulamc, Vincenzo Di Marzoa;Ã aEndocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, Comprensorio Olivetti, Fabbricato 70, 80078 Pozzuoli (Naples), Italy bDiSCAFF, Universita© del Piemonte Orientale, Viale Ferrucci 33, 28100 Novara, Italy cDepartment of Medicinal Chemistry and Natural Products, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel Received 16 November 2001; revised 22 January 2002; accepted 23 January 2002 First published online 31 January 2002 Edited by Judit Ova¨di The 2-AGE binds selectively to CB vs. CB cannabinoid Abstract The occurrence of the novel proposed endocannabi- 1 2 noid, noladin ether (2-arachidonyl glyceryl ether, 2-AGE) in receptors, functionally activates CB1 receptors, and induces various rat organs and brain regions, and its inactivation by responses typical of cannabimimetic compounds in the mouse intact C6 glioma cells, were studied. 2-AGE was measured by `tetrad' of behavioral tests in vivo [6,7]. Evidence of de novo isotope dilution liquid chromatography-atmospheric pressure biosynthesis and inactivation in brain cells is, however, neces- chemical ionization-mass spectrometry, with a detection limit sary before 2-AGE can reach the status of an endogenous of 100 fmol. A compound with the same mass and chromato- neuronal mediator. Both these criteria are ful¢lled by AEA graphic/chemical properties as 2-AGE was found in whole brain, and 2-AG, which are produced from arachidonic acid (AA)- with the highest amounts in the thalamus and hippocampus.
    [Show full text]
  • Models Cannabinoid Modulation Effects Alzh Eim Er's D Isease
    Supplementary Table 1 – Modulation of the Endocannabinoid System in pathophysiological conditions. Cannabinoid Models Effects Modulation Microglial cell cultures (mice) + Aβ1-42 JWH-015 ↓ Production of proinflammatory cytokines; ↑ Aβ phagocytosis [243] WIN 55,212-2; JWH-133; Microglia cell cultures (rat) + Aβ1-40 ↓ Microglial activation [275] HU-210 Microglia-neuron co-cultures (rat) + Aβ1-40 WIN 55,212-2; JWH-133 ↓ Microglial induced neurotoxicity by ↑ neuronal survival [275] Hippocampal neuron cultures (rat) + Aβ25-35/Aβ1-42 2-AG; URB602, JZL184 ↓ Neurodegeneration and apoptosis [289] Cortical neuron cultures (rat) + Aβ1-42 ↑ Notch-1 signalling [316] AEA PC12 cells (rat) + Aβ1-40 ↓ Neuronal cell loss [290] PC12 cells (rat) + Aβ1-42 ↑ Cell survival; ↓ ROS production, lipid peroxidation [292] SHSY5Y cell cultures (human) + Aβ1-42 CBD ↓ Aβ neurotoxicity [296] SHSY5Y(APP+) cell cultures (human) ↓ Aβ production; ↑ Cell survival [293] HEK(APP+) cell cultures (human); mixed glia-neuron PPARy activation ↓ APP expression; ↑ Aβ clearance [294,295] cultures (mice) transfected with APPswe mutation Icv Aβ1-42 injection (mice); Intracortical Aβ1-42 injection VDM-11 ↓ Hippocampal neuronal damage (rats); memory impairment (mice) [276] (rats) CBD (mice); WIN 55,212-2 Icv Aβ1-40 injection (mice); Icv Aβ25-35 injection (rats) ↓ Microglial activation; spatial learning/memory impairment [244,275] (rats) Intrahippocampal Aβ1-42 injection (rats) WIN 55,212-2 ↓ Neuroinflammation; spatial learning/memory impairment [298] Intrahippocampal Aβ1-42 injection (rats/mice)
    [Show full text]
  • Biological Activity of Cannabichromene, Its Homologs and Isomers
    J C/in Pharmacol. 1981; 21:283S-291 S. Biological Activity of Cannabichromene, its Homologs and Isomers CARLTON E. TURNER, Ph.D., and MAHMOUD A. ELSOHLY, Ph.D. University, Miss. Abstract: Cannabichromene (CBC) is one of four major cannabinoids in Csnnebb sativa L. and isthe second most abundant eannabinoid in drug-type cannabis.Cartna- bichromene and some of its homologs, analogs, and isomers were evaluated for- antiinflammatory, antibacterial, and antifungal activity. Antiinflammatory activity was evaluated by the carrageenan-induced rat paw edema andthe eqfhrocyte membrane- stabilization method. In both tests, CBC was superior to phenylbutazone. Antibacte- rial activity of CBC and its isomers and homologs was evaluated using gram-positive, gram-negative, and acid-fast-bacteria. Antifungal activity was evaluated using yeast- like and filamentous fungi and a dermatophyte. Antibacterial activity was strong, and the antifungal activity was mild to moderate. RUDE drugs from the cannabis plant was carried out on mixtures of these com- C have been used by man for over 5000 pounds in the ratios in which they occur in years. Some of these crude drugs have been the crude drugs. Also, the “most active” in- associated with varying degrees of medical gredient, THC, was considered to be the applications in many countries. However, only significant compound in understand- as new and better medicinal agents were ing the pharmacologic action of mari- discovered, these crude drugs lost favor in huana. Actually, marihuana contains formal medical clinics. Interest in these many compounds that are active in biologic crude drugs has recently been renewed. The systems,’ U.S. Federal Government, since 1968, has Cannabis-is-a comprtix lplant which con- sponsored considerable research on can- tai’ns 421 known compoufids Fran 18 differ--~ nabis (mostly marihuana and hashish) and ent chemical classes.
    [Show full text]