Hazard Control & PPE Selection Guide

Total Page:16

File Type:pdf, Size:1020Kb

Hazard Control & PPE Selection Guide Hazard Control & PPE Selection Guide Environmental Health & Safety 4202 E. Fowler Ave. OPM 100 Tampa, FL 33620 (813) 974-4036 http://www.usf.edu/ehs/ Revised February 19, 2021 2 Contents Introduction .................................................................................................................................................. 3 Chemical Hazards .......................................................................................................................................... 4 Chemical Safety Levels (CSLs) ....................................................................................................................... 8 Biological Hazards ....................................................................................................................................... 12 Physical Hazards ......................................................................................................................................... 14 Radiological Hazards ................................................................................................................................... 17 Laser Hazards .............................................................................................................................................. 18 Laser System Non-Beam Hazards ............................................................................................................... 18 Nanomaterial Hazards ................................................................................................................................ 20 Shop Hazards............................................................................................................................................... 22 Blank Hazard Control Worksheet ................................................................................................................ 24 References .................................................................................................................................................. 25 Appendix 1: Establishing Chemical Safety Levels (American Chemical Society) ......................................... 26 3 Introduction This guide is a resource for Principal Investigators and Lab/Shop/Studio Supervisors to evaluate and control hazards and choose Personal Protective Equipment (PPE) that is appropriate for workers. Note: Personal Protective Equipment shared between different individuals must be appropriately disinfected and/or laundered between uses by different individuals. Hazardous materials, such as chemicals, biological agents, and radioactive materials, can enter the body in four different ways: Absorption through the skin Inhalation Ingestion (eating and drinking) Injection (needles or sharp pieces of glass, metal, or plastic Whether or not exposure will lead to illness or injury depends on: Exposure frequency Exposure duration Individual factors (age, sex, and genetics) First, access the risk by asking these questions: What are the hazards? What is the worst that could happen? What can be done to prevent this from happening? What should be done if something goes wrong? Exposure risk can be minimized using these control factors (in order from most effective to least effective): Elimination of hazard Substitution of less hazardous materials Engineering controls (fume hoods, biosafety cabinets, blast shields, snorkels) Administrative controls (Safety Operating Procedures, training) Personal protective equipment *Note that PPE is your last line of defense. Apply other controls FIRST before selecting PPE. PPE is not a substitute for proper lab attire. Clothing such as shorts or short skirts, sandals, or open-toed shoes are not appropriate for the laboratory. How to use this guide Survey your workspace for hazards. Divide them up by category such as Chemical, Biological, Physical, and Radiological. Review the tables below and check off each activity as it applies to your lab. Use the blank spaces at the end to fill in any activities that are not listed. Make note of any deviations from the suggested PPE, explain the need for the change, and how protection will be assured. 4 Chemical Hazards (see below for explanation of CSL Levels) Check if Activity Potential Hazard Engineering Controls Administrative Controls Recommended PPE applicable ☐ Small volumes • Eye or skin Adequate ventilation, • Written procedure Safety glasses or chemical splash of mildly damage chemical fume hood, or (SOP) goggles corrosive • Lung damage local exhaust. If • Safety Data Sheets Light chemical resistant gloves liquids from inhalation unavailable, a respirator (SDS) (disposable nitrile, latex). See the pH>2 or <12.5 may be required (contact • Job-specific training chemical glove compatibility chart CSL 2-3 EH&S) • EH&S Lab and to choose appropriate chemical Research training resistant gloves specific to the chemical being used Lab coat ☐ Large volumes • Extensive eye Adequate ventilation, • Peer-reviewed written Chemical splash goggles of highly or skin damage chemical fume hood, or procedure (SOP) Face shield corrosive • Lung damage local exhaust. If • Safety Data Sheets Heavy chemical resistant gloves liquids from inhalation unavailable, a respirator (SDS) (neoprene or butyl), especially if pH<2 or >12.5 may be required (contact • Job-specific training hands will be immersed. See the Work where EH&S) • EH&S Lab and chemical glove compatibility chart there is a splash Research training to choose appropriate chemical hazard • Consider pre- resistant gloves specific to the CSL 4 diluted corrosive chemical being used solutions Lab coat Chemical resistant apron ☐ Acutely toxic • Extensive eye Acid resistant fume hood • Peer-reviewed written Chemical splash goggles corrosive or skin damage procedure (SOP) Face shield liquids • Lung damage • Safety Data Sheets Heavy chemical resistant gloves Any volume of from inhalation (SDS) (neoprene or butyl) hydrofluoric Poisoning • Job-specific training See the chemical glove acid through skin • EH&S Lab and compatibility chart to choose Any contact Research training appropriate chemical resistant concentration Consider pre-diluted gloves specific to the chemical corrosive solutions 5 of perchloric Practice before working being used acid with live material Lab coat CSL 4 Chemical resistant apron ☐ Small volumes Eye or skin damage Adequate ventilation, SOP, Research-specific Safety glasses or chemical splash of organic Poisoning through chemical fume hood, or training, and EH&S goggles solvents, skin contact local exhaust. If training Light chemical resistant gloves flammable unavailable, a respirator (nitrile, latex). See the chemical organic may be required (contact Purchase prepared glove compatibility chart to choose compounds, or EH&S) solutions appropriate chemical resistant oxidizers gloves specific to the chemical Flash point at or being used above 73F Lab coat (22.8C) but less than 100F (37.8C). CSL 2,3 ☐ Large volumes Extensive eye or Chemical fume hood Peer-reviewed SOP, Chemical splash goggles of organic skin damage Research-specific Face shield solvents, Lung damage from training, and EH&S Heavy chemical resistant gloves flammable inhalation training (neoprene or butyl) , especially if organic Poisoning through hands will be immersed. See the compounds, or skin contact Do not store large chemical glove compatibility chart oxidizers Fire volumes to choose appropriate chemical Flash point Handle in areas free of resistant gloves specific to the below 73F ignition sources chemical being used (22.8C) and Do not heat with open Flame resistant lab coat boiling point flame (use steam bath, Chemical resistant apron below 100F. water bath, heating CSL 4 mantle, hot air bath) Bond and ground metal equipment to avoid static sparks ☐ Pyrophoric Extensive eye or Chemical fume hood Peer-reviewed SOP, Chemical splash goggles liquids, air skin damage Research-specific Face shield 6 and/or water Lung damage from Inert atmosphere glove training, and EH&S Heavy chemical resistant gloves reactive liquids inhalation bag or glove box training (neoprene, butyl, or flame in any quantity Poisoning through resistant). See the chemical glove CSL 4 skin contact Practice before working compatibility chart to choose Fire with live material appropriate chemical resistant gloves specific to the chemical being used Flame resistant lab coat Chemical resistant apron ☐ Acutely toxic or Extensive eye or Adequate ventilation, Peer-reviewed SOP, Chemical splash goggles hazardous skin damage chemical fume hood, or Research-specific Heavy chemical resistant gloves chemicals, Poisoning through local exhaust. If training, and EH&S (neoprene or butyl). See the including skin contact unavailable, a respirator training chemical glove compatibility chart organic may be required (contact Medical surveillance to choose appropriate chemical mercury EH&S) may be required resistant gloves specific to the compounds Inert atmosphere depending on quantity, chemical being used CSL 4 Trap or condense gases, toxicity, and frequency Lab coat or gown vapors, and aerosols to of exposure avoid contaminating vacuum pumps or Practice before working discharging large with live material quantities to fume hood exhaust air Inform nearby persons Use designated area with a sign: “Toxic Compounds Use Area” ☐ Pressurized Eye or skin damage Chemical fume hood with SOP, Research-specific Safety glasses or chemical splash apparatus (lacerations due to sash lowered as much as training, and EH&S goggles CSL 3,4 shrapnel)
Recommended publications
  • Biological Safety Standard Operating Procedure (SOP) SOP Title
    IBSP005 Biosafety SOP template January 2021 Icahn School of Medicine at Mount Sinai Biological Safety Standard Operating Procedure (SOP) SOP Title SOP Number (version) IBC registration(s) Section 1. Laboratory-specific information Building/Room(s) Department/Institute SOP author LSO PI name PI signature Section 2. Biological hazard information Biological Agent1 RG2 BSL3 Potential Hazards Signs/Symptoms of Occupational Health ABSL4 Infection Requirements Section 3. Other hazards Sharps Hazards Other Biological Hazards Chemical Hazards Radiological Hazards Section 4. Personal Protective Equipment (PPE) Laboratory Coat Fluid-Resistant Gown Surgical Mask Gloves Shoe Covers N95 Respirator Eye Protection Fluid-Resistant Sleeves PAPR Other PPE 1 Specific strains of biological agents should be described in the corresponding IBC registration. 2 NIH Risk Groups: RG-1, RG-2, RG-3, or RG-4 3 Biological Safety Level: BSL-1, BSL-2, BSL-3, BSL-4 4 Animal Biological Safety Level: ABSL-1, ABSL-2, ABSL-3, ABSL-4 Page | 1 IBSP005 Biosafety SOP template January 2021 Section 5. Equipment and Engineering Controls Biological Safety Cabinet Centrifuge Aerosol-Generating Equipment Other equipment Section 6. Decontamination Disinfectant Contact Time Dilution Location Section 7. Waste Management/Disposal Steam Sterilizer Location: (Autoclave) Chemical Disinfectant(s) Location: Other Disinfectant(s) Location: Section 8. Transport Procedure(s) Page | 2 IBSP005 Biosafety SOP template January 2021 Section 9. Spill Response Procedure Section 10. Protocol Procedure Page | 3 IBSP005 Biosafety SOP template January 2021 Section 10. Protocol Procedure Continued (attach additional sheets if necessary) Page | 4 IBSP005 Biosafety SOP template January 2021 Section 11. Documentation of training and understanding. The Principal Investigator must ensure that all laboratory personnel receive training on the content of this SOP.
    [Show full text]
  • Occupational Safety and Health Admin., Labor § 1910.145
    Occupational Safety and Health Admin., Labor § 1910.145 of the workers or their families, shall (i) Fire protection equipment and appa- be provided in connection with all food ratus. [Reserved] handling facilities. There shall be no (ii) Danger. Safety cans or other port- direct opening from living or sleeping able containers of flammable liquids quarters into a kitchen or dining hall. having a flash point at or below 80° F, (3) No person with any communicable table containers of flammable liquids disease shall be employed or permitted (open cup tester), excluding shipping to work in the preparation, cooking, containers, shall be painted red with serving, or other handling of food, food- some additional clearly visible identi- stuffs, or materials used therein, in fication either in the form of a yellow any kitchen or dining room operated in band around the can or the name of the connection with a camp or regularly contents conspicuously stenciled or used by persons living in a camp. painted on the can in yellow. Red (j) Insect and rodent control. Effective lights shall be provided at barricades measures shall be taken to prevent in- and at temporary obstructions, as spec- festation by and harborage of animal ified in ANSI Safety Code for Building or insect vectors or pests. Construction, A10.2±1944, which is in- (k) First aid. (1) Adequate first aid fa- corporated by reference as specified in cilities approved by a health authority § 1910.6. Danger signs shall be painted shall be maintained and made available red. in every labor camp for the emergency (iii) Stop.
    [Show full text]
  • Sample Workplace Self- Inspection Security Checklist
    Sample Workplace Self- Inspection Security Checklist Facility: ������������������������������������������������������������������������������������������������������������������������� Address/Work Location: �������������������������������������������������������������������������������������������������������� Assessment Done By: ����������������������������������������������������������������������������������������������������������� Date of Assessment: ������������������������������������������������������������������������������������������������������������ SECURITY CONTROL PLAN YES NO Has a Security Control Plan been developed? If yes, is it in writing? If yes, does it include a policy statement? If yes, does it include review of employee incident exposure? If yes, does it include evaluation of work areas? Identification of Control Methods considered: Engineering Controls Work Practice Controls Recordkeeping Does it include training? Does it include an evacuation and floor plan? Is the Security Control Plan accessible to all employees? Is the Security Control Plan reviews and updated when a task has been added or changed, and at least annually? Have you coordinated your Security Control Plan with local law enforcement? EMPLOYER POLICY STATEMENT YES NO Is the Workplace Violence Policy statement clearly written? WORK AREA EVALUATION BY EMPLOYER YES NO If yes, how often? Are all areas being evaluated? If no, which areas are not being evaluated? Comments: Continued >> Loss Control Services Workplace Security Checklist CONTROL MEASURES
    [Show full text]
  • Lab Standard Operating Procedures (Sops)
    QAPP –Watershed Watch Laboratory Assays Revision: 7 Date: September 2020 Appendix A Standard Operation Procedures List of SOPs SOP SOP Revision Description Number Date General Laboratory Safety 001 11/04 1 URI Laboratory Waste Guidebook 001a 09/13 3 URI laboratory Chemical Hygiene Plan 001b 07/04 Laboratory Water 002 11/16 3 General Labware Cleaning Procedure 003 07/19 4 General Autoclave Operation 004 10/18 6 Bottle Autoclaving Procedure 005 01/16 5 Waste Autoclaving Procedure 006 01/16 3 Chlorophyll-A Analysis, Welschmeyer Method 012 04/18 6 Chloride Analysis 013 11/16 5 Ammonia Analysis 014 11/16 5 Orthophosphate and Nitrate + Nitrite Analysis 015 12/16 5 Total Phosphorus and Nitrogen Analysis 016 12/16 5 Salinity Analysis Using a Refractometer 017 11/16 1 Enterococci Analysis Using Enterolert IDEXX Method 018 12/19 4 Analytical Balance Calibration 019 2/06 2 pH Procedure 021 12/19 3 Alkalinity Procedure 022 11/16 2 Filtering Water Samples 023 10/18 2 Fecal coliform Analysis Using Colilert 18 IDEXX 024 01/16 2 Method Laboratory Thermometer Calibration 025 04/19 1 Heterotrophic Plate Count – Quanti-tray 026 05/20 1 Appendix A Standard Operating Procedure 001 Date: 11/04 General Laboratory Safety Revision: 1 Author: Linda Green University of Rhode Island Watershed Watch 1.0 PURPOSE AND DESCRIPTION LAB SAFETY IS EVERYBODY’S JOB! Please be sure to familiarize yourself with these general procedures, as well as the specific handling requirements included in the Standard Operating Procedure (SOP) for each analysis/process. Further general information regarding University of Rhode Island standards for health and safety are found in SOP 001a – University Safety and Waste Handling Document.
    [Show full text]
  • Common Personal Protective Equipment for Laboratories
    Common Personal Protective Equipment The following document is to provide general guidance for common types of Personal Protective Equipment (PPE) within a laboratory. PPE should be selected based on the hazards present and task performed and is a last line of defense to protect personnel from hazards. All PPE has limitations. If there are any specific questions regarding PPE, please consult your Principal Investigator, the Laboratory Safety Unit, or the University’s Personal Protective Equipment Program. Please contact EH&S with questions regarding PPE selection and hazard assessments. Face and Eye Protection: Must be ANSI Z87.1 compliant Type of PPE: General Uses: Limitations Vapor Goggles • Conforms tight to the • Not designed face for impact • Fully seals around the protection eyes to protect against • Limited splash vapors protection • Protection from heavy particulates (wood/sand/debris) Safety Glasses • Eye protection from • Not designed impact and larger for vapor foreign objects protection • Minimal splash protection Laser Safety • Laser and wavelength • Not designed Glasses/Goggles specific eye protection for vapor or • Must meet current ANSI splash Z136.1 requirements protection and be clearly labeled with optical densities (OD) and wavelength Face Shield • Used for full face splash • Not designed protection for vapor • Available in chin, full protection face, or neck length • Certain types can be used for UV and radiological isotopes protection Environmental Health & Safety 1 of 4 May 2021 Glove Protection: Type of PPE: General Uses: Limitations Nitrile Gloves • Disposable, one-time • May not protect use against • General barrier hydrocarbons protection, allows for and alcohols. Nitrile good dexterity Consult a hand alternatives protection are discussed chart, like here.
    [Show full text]
  • Personal Protective Equipment (PPE) Guide
    Personal Protective Equipment (PPE) Guide Volume 1: General PPE February 2003 F417-207-000 This guide is designed to be used by supervisors, lead workers, managers, employers, and anyone responsible for the safety and health of employees. Employees are also encouraged to use information in this guide to analyze their own jobs, be aware of work place hazards, and take active responsibility for their own safety. Photos and graphic illustrations contained within this document were provided courtesy of the Occupational Safety and Health Administration (OSHA), Oregon OSHA, United States Coast Guard, EnviroWin Safety, Microsoft Clip Gallery (Online), and the Washington State Department of Labor and Industries. TABLE OF CONTENTS (If viewing this pdf document on the computer, you can place the cursor over the section headings below until a hand appears and then click. You can also use the Adobe Acrobat Navigation Pane to jump directly to the sections.) How To Use This Guide.......................................................................................... 4 A. Introduction.........................................................................................6 B. What you are required to do ..............................................................8 1. Do a Hazard Assessment for PPE and document it ........................................... 8 2. Select and provide appropriate PPE to your employees................................... 10 3. Provide training to your employees and document it ........................................ 11
    [Show full text]
  • 7. Tasks/Procedures 8. Hazards 9. Abatement
    FS-6700-7 (11/99) 1. WORK PROJECT/ 2. LOCATION 3. UNIT(S) U.S. Department of Agriculture ACTIVITY Coconino National Forest All Districts Forest Service Trail Maintenance JOB HAZARD ANALYSIS (JHA) 4. NAME OF ANALYST 5. JOB TITLE 6. DATE PREPARED References-FSH 6709.11 and 12 Amy Racki Partnership Coordinator 10/28/2013 9. ABATEMENT ACTIONS 7. TASKS/PROCEDURES 8. HAZARDS Engineering Controls * Substitution * Administrative Controls * PPE Personal Protective Equipment Wear helmet, work gloves, boots with slip-resistant heels and soles with firm, flexible support, eye protection, long sleeve shirts, long pants, hearing protection where appropriate Carry first aid kit Vehicle Operation Fatigue Drive defensively and slow. Watch for animals Narrow, rough roads Always wear seatbelts and turn lights on Poor visibility Mechanical failure Ensure that you have reliable communication Vehicle Accients Obey speed limits Weather Keep vehicles maintained. Keep windows and windshield clean Animals on Road Anticipate careless actions by other drivers Use spotter when backing up Stay clear of gullies and trenches, drive slowly over rocks. Carry and use chock blocks, use parking brake, and do not leave vehicle while it is running Inform someone of your destination and estimated time of return, call in if plans change Carry extra food, water, and clothing Stop and rest if fatigued Hiking on the Trail Dehydration Drink 12-15 quarts of water per day, increase fluid on hotter days or during extremely strenuous activity Contaminated water Drink
    [Show full text]
  • Understanding Asthma
    Understanding Asthma The Mount Sinai − National Jewish Health Respiratory Institute was formed by the nation’s leading respiratory hospital National Jewish Health, based in Denver, and top ranked academic medical center the Icahn School of Medicine at Mount Sinai in New York City. Combining the strengths of both organizations into an integrated Respiratory Institute brings together leading expertise in diagnosing and treating all forms of respiratory illness and lung disease, including asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and bronchiectasis. The Respiratory Institute is based in New York City on the campus of Mount Sinai. njhealth.org Understanding Asthma An educational health series from National Jewish Health IN THIS ISSUE What Is Asthma? 2 How Does Asthma Develop? 4 How Is Asthma Diagnosed? 5 What Are the Goals of Treatment? 7 How Is Asthma Managed? 7 What Things Make Asthma Worse and How Can You Control Them? 8 Nocturnal Asthma 18 Occupational Asthma 19 Medication Therapy 20 Monitoring Your Asthma 29 Using an Action Plan 33 Living with Asthma 34 Note: This information is provided to you as an educational service of National Jewish Health. It is not meant as a substitute for your own doctor. © Copyright 1998, revised 2014, 2018 National Jewish Health What Is Asthma? This booklet, prepared by National Jewish Health in Denver, is intended to provide information to people with asthma. Asthma is a chronic respiratory disease — sometimes worrisome and inconvenient — but a manageable condition. With proper understanding, good medical care and monitoring, you can keep asthma well controlled. That’s our treatment goal at National Jewish Health: to teach patients and families how to manage asthma, so that they can lead full and productive lives.
    [Show full text]
  • Controlling Hazardous Energy: De-Energization and Lockout Iii Trapped-Key Interlock Systems
    Controlling Hazardous Energy De-Energization and Lockout About WorkSafeBC At WorkSafeBC, we’re dedicated to promoting safe and healthy workplaces across B.C. We partner with workers and employers to save lives and prevent injury, disease, and disability. When work-related injuries or diseases occur, we provide compensation and support injured workers in their recovery, rehabilitation, and safe return to work. We also provide no-fault insurance and work diligently to sustain our workers’ compensation system for today and future generations. We’re honoured to serve the workers and employers in our province. Prevention Information Line We provide information and assistance with health and safety issues in the workplace. Call the information line 24 hours a day, 7 days a week to report unsafe working conditions, a serious incident, or a major chemical release. Your call can be made anonymously. We can provide assistance in almost any language. If you have questions about workplace health and safety or the Occupational Health and Safety Regulation, call during our office hours (8:05 a.m. to 4:30 p.m.) to speak to a WorkSafeBC officer. If you’re in the Lower Mainland, call 604.276.3100. Elsewhere in Canada, call toll-free at 1.888.621.7233 (621.SAFE). Health and safety resources You can find our health and safety resources on worksafebc.com, and many of them can be ordered from the WorkSafeBC Store at worksafebcstore.com. In addition to books, you’ll find other types of resources at the WorkSafeBC Store, including DVDs, posters, and brochures. If you have any questions about placing an order online, please contact a customer service representative at 604.232.9704 or toll-free at 1.866.319.9704.
    [Show full text]
  • Sampling Guide for First Responders to Drinking Water Contamination Threats and Incidents
    Sampling Guide for First Responders to Drinking Water Contamination Threats and Incidents This First Responders Sampling Guide was funded under U.S. EPA Assistance Agreement No. X6-97109101-1. Sampling Guide for First Responders to Drinking Water Contamination Threats and Incidents New England Water Works Association 125 Hopping Brook Road Holliston, MA 01746-1471 November 2008 Acknowledgments This Sampling Guide for First Responders to Drinking Water Contamination Threats and Incidents was originally developed by the New England Water Works Association in collaboration with U.S. EPA. Please refer to pages 75 and 76 for a complete list of acknowledgments. The cover photo is reprinted with permission from the Worcester Telegram & Gazette. IMPORTANT NOTICE The methods and instructions in this guide reflect the U.S. Environmental Protection Agency (EPA) regulations and guidance, in addition to other reference documents. It is recognized that there can be significant differences from state to state regarding public notification, sampling procedures, laboratory safety, and handling, etc. Please check with your state drinking water representative with any questions before First Responders training and preparation is begun. Contents, Sections 1 through 6 1. Introduction 1.1 Background/Purpose ......................................1 1.2 How to Use This Guide ....................................2 2. Overview of Site Characterization .........................3 2.1 Investigating the Site .......................................3 2.2 Who Conducts Site Characterization and Sampling? .................................................5 3. Site Characterization Five-Step Process ...............6 3.1 The Five-Step Process .....................................6 Step 1: Customizing the Site Characterization Plan ........................8 Step 2: Approaching the Site and Doing a Field Safety Screening ........9 Step 3: Characterizing the Site ...................11 Step 4: Collecting Samples ..........................14 Step 5: Exiting the Site .................................16 4.
    [Show full text]
  • TOXICOLOGY and EXPOSURE GUIDELINES ______(For Assistance, Please Contact EHS at (402) 472-4925, Or Visit Our Web Site At
    (Revised 1/03) TOXICOLOGY AND EXPOSURE GUIDELINES ______________________________________________________________________ (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) "All substances are poisons; there is none which is not a poison. The right dose differentiates a poison and a remedy." This early observation concerning the toxicity of chemicals was made by Paracelsus (1493- 1541). The classic connotation of toxicology was "the science of poisons." Since that time, the science has expanded to encompass several disciplines. Toxicology is the study of the interaction between chemical agents and biological systems. While the subject of toxicology is quite complex, it is necessary to understand the basic concepts in order to make logical decisions concerning the protection of personnel from toxic injuries. Toxicity can be defined as the relative ability of a substance to cause adverse effects in living organisms. This "relative ability is dependent upon several conditions. As Paracelsus suggests, the quantity or the dose of the substance determines whether the effects of the chemical are toxic, nontoxic or beneficial. In addition to dose, other factors may also influence the toxicity of the compound such as the route of entry, duration and frequency of exposure, variations between different species (interspecies) and variations among members of the same species (intraspecies). To apply these principles to hazardous materials response, the routes by which chemicals enter the human body will be considered first. Knowledge of these routes will support the selection of personal protective equipment and the development of safety plans. The second section deals with dose-response relationships.
    [Show full text]
  • Biosafety Level 2 Guide University of Illinois at Urbana-Champaign
    Biosafety Level 2 Guide University of Illinois at Urbana-Champaign Table of Contents Introduction .................................................................................................................................................. 2 Risk Assessments .......................................................................................................................................... 2 Routes of Exposure ................................................................................................................................... 3 Risk Groups and Biosafety Levels .............................................................................................................. 4 IBC Registrations ....................................................................................................................................... 5 Laboratory Audits...................................................................................................................................... 5 Risk Assessment Scenarios ........................................................................................................................ 5 Training requirements .................................................................................................................................. 7 Introduction to Biosafety .......................................................................................................................... 7 NIH Guidelines Overview .........................................................................................................................
    [Show full text]