Consolidated Material Recovery Facility and Compost Feasibility Study

Total Page:16

File Type:pdf, Size:1020Kb

Consolidated Material Recovery Facility and Compost Feasibility Study CONSOLIDATED MATERIAL RECOVERY FACILITY AND COMPOST FEASIBILITY STUDY UNIVERSITY OF CALIFORNIA, SANTA CRUZ SEPTEMBER 5, 2014 TABLE OF CONTENTS I. ACKNOWLEDGEMENTS ...............................................................................................1 II. EXECUTIVE SUMMARY ................................................................................................3 III. BACKGROUND AND OVERVIEW .................................................................................7 • Overview • Campus Sustainability Goals • Study Scope and Purpose • Project Goals and Objectives • Methodology IV. WASTE SYSTEM ANALYSIS ..........................................................................................13 • Current Waste Diversion Services • Campus Objectives • Waste System Alternatives • Evaluation of Alternatives V. COMPOST PROGRAM ANALYSIS ................................................................................25 • Campus-Generated Compostable Material • Off-Campus Composting Options • On-Campus Opportunities and Constraints • Composting Technology Options • Academic Calendar Note • Associated Costs for Composting Alternatives • Finding • Cost and Revenue Tables, prepared by Clements Environmental VI. CONSOLIDATED MATERIAL RECOVERY FACILITY .....................................................43 • Description of a Consolidated Material Recovery Facility • Permit Requirements VII. SITE ANALYSIS AND RECOMMENDATION ..................................................................51 • Site Option 1: The Bowl • Site Option 2: North Remote • Site Selection Recommendation VIII. RECOMMENDED SITE: THE BOWL ............................................................................67 • Site Diagram Narrative • Site Diagram • Precedent Design Images • Cost Estimate IX. APPENDICES ................................................................................................................79 UNIVERSITY OF CALIFORNIA, SANTA CRUZ CONSOLIDATED MATERIAL RECOVERY FACILITY AND COMPOST FEASIBILITY STUDY ACKNOWLEDGEMENTS PARTICIPANTS The Consolidated Material Recovery Facility and Compost Feasibility Study was prepared in 2013-2014 and completed with the insight, understanding, and assistance of University of California Santa Cruz staff and a team of specialized consultants. Staff and consultants include: UCSC Physical Planning and Construction John Barnes – Associate Vice Chancellor, Campus Architect Dean Fitch – Senior Planner Eli Mowbray, P.E. – Senior Civil Engineer, Project Manager Alisa Klaus - Senior Environmental Planner Courtney Trask - Storm Water Manager Steve Paul - Campus Engineer UCSC Capital Planning and Space Management David A. Lane - Senior Educational Facilities Planner Erin Fitzgibbons - Educational Facilities Planner UCSC Physical Plant Henry Salameh - Director of Physical Plant Roger Edberg - Senior Superintendent of Grounds Services Bradley Angell - Administrative Analyst for Grounds Operations UCSC Environmental Health & Safety Dan Blunk - Environmental Programs Manager UCSC Office of Sustainability Elida Erickson - Sustainability Programs Manager Chris Kane - Student Representative ADDITIONAL CONTRIBUTORS UCSC Housing and Dining Facilities Silas Snyder - Safety, Training, and Resource Conservation Coordinator UCSC Center for Agroecology and Sustainable Food Systems Daniel Press - Executive Director Liz Milazzo - Field Production Manager CONSULTANT TEAM Landscape Architect: Joni L. Janecki and Associates, Inc. Joni L. Janecki, ASLA – President Nicole Steel, RLA – Senior Associate, Project Manager Waste Management Consultant: Clements Environmental Chip Clements, P.E. – President Civil Engineer: Bowman & Williams Jeff Naess, P.E. – President Geotechnical Engineer: Pacific Crest Engineering, Inc. Elizabeth Mitchell, P.E. – Principal Cost Estimator: AECOM (Davis Langdon) David Cobb – Senior Associate UNIVERSITY OF CALIFORNIA, SANTA CRUZ 1 CONSOLIDATED MATERIAL RECOVERY FACILITY AND COMPOST FEASIBILITY STUDY 2 EXECUTIVE SUMMARY ACKNOWLEDGEMENTS EXECUTIVE SUMMARY BACKGROUND AND OVERVIEW WASTE SYSTEM ANALYSIS COMPOST PROGRAM ANALYSIS CONSOLIDATED MATERIAL RECOVERY FACILITY SITE ANALYSIS AND RECOMMENDATION RECOMMENDED SITE: THE BOWL APPENDICES UNIVERSITY OF CALIFORNIA, SANTA CRUZ 3 CONSOLIDATED MATERIAL RECOVERY FACILITY AND COMPOST FEASIBILITY STUDY EXECUTIVE SUMMARY EXECUTIVE SUMMARY The University of California, Santa Cruz is a leader effective, improve operating efficiencies, enhance in sustainability and environmental stewardship, land use, and maximize educational opportunities as demonstrated by the Campus' inclusion in reveals that centralization of all operations in one Princeton Review's 2014 "Green College Honor Roll' consolidated material recovery facility is the best with a perfect score for sustainability and by the option for the Campus to pursue. UCSC Grounds Services Department receiving the prestigious Sustainability Best Practice Award for The study also provides detailed analysis of the two Innovative Waste Reduction at the 2014 California pre-selected sites, known as the Bowl and North Higher Education Sustainability Conference. This Remote, as potential homes for a consolidated tradition of sustainability goes back to UCSC's material recovery facility. Although no site is without establishment in 1965, when its founders placed its challenges, the Bowl offers adequate space environmental stewardship as the cornerstone of to accommodate all of UCSC's current and future the new university's philosophy and approach to waste diversion efforts, is large enough to house planning. This stewardship continues today and is stormwater management features, encourages demonstrated not only by the accolades of other potential partnering with neighboring Center for environmentally minded groups, but by UCSC's Agroecology & Sustainable Food Systems (CASFS), ongoing commitment to responsibly diverting 95% of is accessible to the larger campus, and has minimal campus waste from the landfill to resource recovery. impact on existing parking. The Bowl has been The Campus' current excellence in waste stream selected as the preferred site for future material diversion places it in an ideal position to meet the recovery efforts. University of California Regents challenge to achieve Zero Waste by 2020. UCSC's commitment to producing zero waste by the year 2020 is being complicated by changing trends To further the success of current practices and meet in what types of material landfill operations accept. the Zero Waste challenge, UCSC commissioned While organic material, including food scraps, paper a team of consultants versed in campus planning towels, and compostable ware, currently makes up and resource recovery to assess the feasibility of 48% (by weight) of campus solid waste (see chart establishing an on-campus consolidated material below), regional landfills have changed their policies recovery facility. The team was charged with and will no longer accept such organic material. This evaluating two pre-vetted sites on the campus in terms of each site's economic and environmental WASTE STREAM BY WEIGHT viability to serve UCSC's current and future Food scraps & compostable resource recovery and composting needs. The site paper 48% Trash 32% assessment and evaluation is described in detail in the following Consolidated Material Recovery Mixed recyclable paper 14% Facility and Compost Feasibility Study. The study Glass bottles & jars 2% outlines UCSC's various waste streams and its Uncoated corrugated cardboard 1% current processing systems, then evaluates six waste Plastic containers 1% diversion alternatives. Qualitative analysis of each Expanded polystyrene 1% option's potential to meet UCSC's goals, remain cost 4 UNIVERSITY OF CALIFORNIA, SANTA CRUZ CONSOLIDATED MATERIAL RECOVERY FACILITY AND COMPOST FEASIBILITY STUDY EXECUTIVE SUMMARY leaves the Campus with no options for off-campus Developed in close partnership with UCSC disposal that will still enable it to achieve Zero Waste. stakeholders and representatives, this study's To respond to this constraint, the study evaluates the recommendations are in balance with human and feasibility of establishing an on-campus composting environmental resources, with campus education facility. Based on environmental impacts, costs, and and stewardship, as well as with long-range physical permitting requirements, the study recommends an planning objectives for campus lands. The key in-vessel composting system. findings are: • Consolidate all material recovery operations in The team was also charged with developing a one facility. conceptual layout for the consolidated resource • Locate the consolidated material recovery recovery facility at the Bowl which includes all facility at the Bowl site. current and future program elements. An early • Incorporate an in-vessel composting system programmatic cost estimate prepared in December to process organic material. 2013, included in the appendices, estimated that the • Implementation to be phased, with Phase 1 full construction of the facility and site would cost construction scheduled for Summer 2015. approximately $3.5 million. Since implementation • Great Meadow Bike Path improvements of the full program is not possible within the planned and to be funded by TAPS grant. budget currently allocated to this project, the study recommend that the initial phase of work, to be constructed in Summer 2015 with a budget of $671,000, include the following: • Bring utilities to the site for future build-out; Disclaimer:
Recommended publications
  • Permaculture Principles
    An Introduction by Damian Mason “Permaculture is a philosophy of working with, rather than against nature; of protracted and thoughtful observation rather than protracted and thoughtless labor; and of looking at plants and animals in all their functions, rather than treating everything as a single product system.” - Bill Mollison Organic Gardening Sustainable Cities Native Plants Food Banks & Gleaning Aquaponics Programs Greywater Systems Animals & Bee-Keeping Natural Buildings Disaster Relief & Preparedness Farmer’s Markets Conflict Resolution Slow Food Solutions to Climate Community Gardens Change Eco-villages & Cohousing Bioremediation Social Justice Beavers are a keystone species that turn deserts into gardens and mitigate drought & climate change. Uses local material to build home & makes habitat for many others as well. Shares lodge in winters. Hydrology 101: Slow it, Spread it, Sink it Take care of the earth. Leave it better than you found it. Care for all people. Return the surplus so that all may get a Fair Share. The focus is on creating a synergy where the whole is greater than the sum of its parts. “Beauty is in the eye of the beholder.” By taking time to engage with nature we can design solutions that suit our particular situation. Example: Weed or medicinal herb? Consider a plant that, when used as a poultice, has the ability to radically speed up wound healing. When eaten they boost the immune system, while the seed heads produce the digestive aid psyllium husk. This remarkable plant is often found just outside of the back door. It is plantain, a plant we usually dismiss as a ‘weed’.
    [Show full text]
  • Using Contract Language to Improve Recycling
    DOWNSTREAM DUE DILIGENCE TO CREATE CLEAN AND MARKETABLE FEEDSTOCKS: USING CITY CODE AND CONTRACT LANGUAGE TO ACHIEVE RESPONSIBLE RECYCLING May 2020 This report is in support of King County’s Responsible Recycling Task Force, Task 5A, which explores using city code and city-hauler contract language to favor or require proper sorting, processing, and recycling of collected recyclable materials. Contract and code language should address all steps and parties in the material handling process including haulers, sorters, brokers, processors, and manufacturers who use recycled material. The report begins with a discussion of how we call out or identify proper recycling, some existing methods of codifying responsible recycling, general approaches for contract language, and some recommended sources for code and contract language. How Do We Know “Responsible Recycling” When We See It When we sort materials for recycling, we expect they will be processed in ways that conserve resources and protect human health and safety. However, different materials have different recycling pathways, which can change often. Markets fluctuate and brokers react. This makes it difficult to identify the final processor or end-user of a material, and therefore hard to assess if the process is environmentally and socially responsible. City codes and city-hauler contracts can be used to define proper recycling or specify environmental and human health practices necessary for proper recycling. Different cities and organizations use various strategies to identify and establish proper recycling outcomes: • Washington State’s Utilities and Transportation Commission (UTC) requires that “local markets” be used whenever possible. • Bothell’s Recology contract states that electronics & small appliance processors must be "fully-permitted and properly operated" and "legitimate".
    [Show full text]
  • Choosing a Soil Amendment Fact Sheet No
    Choosing a Soil Amendment Fact Sheet No. 7.235 Gardening Series|Basics by J.G. Davis and D. Whiting* A soil amendment is any material added not be used as a soil amendment. Don’t add Quick Facts to a soil to improve its physical properties, sand to clay soil — this creates a soil structure such as water retention, permeability, water similar to concrete. • On clayey soils, soil infiltration, drainage, aeration and structure. Organic amendments increase soil amendments improve the The goal is to provide a better environment organic matter content and offer many soil aggregation, increase for roots. benefits. Over time, organic matter improves porosity and permeability, and To do its work, an amendment must be soil aeration, water infiltration, and both improve aeration, drainage, thoroughly mixed into the soil. If it is merely water- and nutrient-holding capacity. Many and rooting depth. buried, its effectiveness is reduced, and it will organic amendments contain plant nutrients interfere with water and air movement and and act as organic fertilizers. Organic matter • On sandy soils, soil root growth. also is an important energy source for amendments increase the Amending a soil is not the same thing bacteria, fungi and earthworms that live in water and nutrient holding as mulching, although many mulches also the soil. capacity. are used as amendments. A mulch is left on the soil surface. Its purpose is to reduce Application Rates • A variety of products are available bagged or bulk for evaporation and runoff, inhibit weed growth, Ideally, the landscape and garden soils and create an attractive appearance.
    [Show full text]
  • Compost? Compost Pile?
    What Do I How Do I Need to Make Start My Compost? Compost Pile? Start by picking a location. When Here’s What You Need… choosing a location look for one that is: • Well-drained and close to level • In partial shade, to help with Composting water retention • At least 1-foot away from walls, What is Composting? fences, bushes, trees etc. • A convenient spot to place Compost is a dark brown, earthy, Other You May Want to Consider: materials and to get the end crumbly material consisting of • Compost pile location product to its final location decomposed organic matter. • How quickly you want the Once you choose your location you Benefits of Composted Material: materials to breakdown will want to loosen the soil so that When added to soil, compost • How you plan to use your your compost will come into improves soil by helping with finished compost contact with the soil. both its porosity and water Other tools you may want to help retention, while providing you get started: essential nutrients plants require. Now You’re Ready Composting also diverts waste • Compost bin to Begin Your Compost Pile! from the waste stream and our • Pitchfork (compost turner) landfills! • Probe thermometer How does Material Decompose? • Chipper/shredder Thousands of Microorganisms • Wheelbarrow (for transport) work to break down the material. If conditions are properly managed we can speed up the Contact The Maine Department of Environmental Protection, Sustainability Division, for More Information: process. Phone: 207-592-0455 Mail: 17 SHS Augusta, ME Building Your Compost Pile Once you have loosened up the soil at your location, you may want to pile 4” to 6” layer of twigs on top of the plot to encourage airflow at the bottom of the pile.
    [Show full text]
  • COMPOST FEASIBILITY STUDY April 2017
    DISTRICT OF COLUMBIA COMPOST FEASIBILITY STUDY April 2017 COMMISSIONED BY: District of Columbia Department of Public Works PREPARED BY: 416 LONGSHORE DRIVE ANN ARBOR, MI 48105 734.996.1361 RECYCLE.COM TABLE OF CONTENTS Executive Summary ....................................................................................................................................... 1 Background and Purpose .............................................................................................................................. 7 Current Operations ................................................................................................................................... 8 SSO Collection ......................................................................................................................................... 10 Processing ............................................................................................................................................... 11 Organics Collection ...................................................................................................................................... 12 Processing Technology ................................................................................................................................ 14 Organics Outreach ....................................................................................................................................... 16 SSO Curbside Collection Modeling .............................................................................................................
    [Show full text]
  • Utilizing Extended Producer Responsibility Framework Laws to Achieve Zero Waste Anthony A
    Golden Gate University Environmental Law Journal Volume 6 Article 4 Issue 2 Pacific Region Edition June 2013 Where Will All the Waste Go?: Utilizing Extended Producer Responsibility Framework Laws to Achieve Zero Waste Anthony A. Austin Follow this and additional works at: http://digitalcommons.law.ggu.edu/gguelj Part of the Environmental Law Commons Recommended Citation 6 Golden Gate U. Envt'l L. J. 221 (2013). This Article is brought to you for free and open access by the Academic Journals at GGU Law Digital Commons. It has been accepted for inclusion in Golden Gate University Environmental Law Journal by an authorized administrator of GGU Law Digital Commons. For more information, please contact [email protected]. Austin: Zero Waste WHERE WILL ALL THE WASTE GO?: UTILIZING EXTENDED PRODUCER RESPONSIBILITY FRAMEWORK LAWS TO ACHIEVE ZERO WASTE ANTHONY A. AUSTIN* I. INTRODUCTION The United States has a waste problem. It represents only five percent of the world population, yet it generates twenty-five to thirty percent of the world’s waste.1 In 2008, the United States generated 389.5 million tons of municipal solid waste (MSW).2 As our economy and population continue to grow, our waste will continue to grow as well.3 The obvious dilemma is that all of this waste, the byproduct of our economic advances, creates significant adverse environmental and public *Judicial Law Clerk to the Honorable Diana L. Terry, Colorado Court of Appeals. J.D., Golden Gate University School of Law (2011); LL.M., Environmental and Natural Resources Law and Policy, University of Denver Sturm College of Law (2012).
    [Show full text]
  • Why Anaerobic Digestion? Anaerobic Digestion Occurs Naturally, in the Absence of Oxygen, As Bacteria Break Down Organic Materials and Produce Biogas
    The Benefits of Anaerobic Digestion of Food Waste At Wastewater Treatment Facilities Why Anaerobic Digestion? Anaerobic digestion occurs naturally, in the absence of oxygen, as bacteria break down organic materials and produce biogas. The process reduces the amount of material and produces biogas, which can be used as an energy source. This technology is commonly used throughout the United States to break down sewage sludge at wastewater treatment facilities. In the past few years, there has been a movement to start adding food waste to anaerobic digesters already in place at wastewater treatment facilities. The anaerobic digestion of food waste has many benefits, including: • Climate Change Mitigation – Food waste in landfills generates methane, a potent greenhouse gas. Diverting food waste from landfills to wastewater treatment facilities allows for the capture of the methane, which can be used as an energy source. In addition to decreased methane emissions at landfills, there are greenhouse gas emissions reductions due to the energy offsets provided by using an on-site, renewable source of energy. • Economic Benefits – Wastewater treatment facilities can expect to see cost savings from incorporating food waste into anaerobic digesters. These include reduced energy costs due to production of on-site power and tipping fee for accepting the food waste. • Diversion Opportunities – Most municipalities are investing in ways to divert materials from landfills. This is usually due to reduced landfill space and/or recycling goals. Wastewater treatment facilities offer the opportunity to divert large amounts of food waste, one of the largest waste streams still going to landfills. Why Food Waste? Food waste is the second largest category of municipal solid waste (MSW) sent to landfills in the United States, accounting for approximately 18% of the waste stream.
    [Show full text]
  • Composting Yard Waste
    Visit us on the Web: www.gardeninghelp.org Composting Yard Waste Yard waste need not find a home away from home. It is one part of the waste stream that can be managed in our own back yards. Solid waste management is everyone’s responsibility. Each person should be able to find new and more effective ways to lessen their community’s dependence on landfills. New solid waste laws in Missouri and Illinois focus on the need to reduce the volume of waste generated. An important area in which we can reduce waste is in our own back yard. Yard waste can represent up to 20% of the solid waste stream. Gardening practices which can be used to reduce yard waste include leaving grass clippings on the lawn, mulching and composting. Don’t Bag Grass Clippings The easiest way to start mulching is to take the grass catcher off the lawn mower. Your mower service agent should be able to put a trap door over the discharge end if your mower does not already have one. For conventional side discharge mowers without a trap door, mulching may require a bit of raking following mowing to break up the little rows of clippings. To avoid raking the entire lawn, mow from the outer edge in ever smaller circles toward the center, making sure that the side discharge mower is “walking” or blowing the grass clippings ever closer to the central point. In this manner, clippings are chopped several times and most fall between the blades as mulch. The few that are left near the center can easily be raked and placed into the compost bin or spread in the garden.
    [Show full text]
  • Waste to Energy in the Age of the Circular Economy Best Practice Handbook
    WASTE TO ENERGY IN THE AGE OF THE CIRCULAR ECONOMY BEST PRACTICE HANDBOOK NOVEMBER 2020 ASIAN DEVELOPMENT BANK WASTE TO ENERGY IN THE AGE OF THE CIRCULAR ECONOMY BEST PRACTICE HANDBOOK NOVEMBER 2020 ASIAN DEVELOPMENT BANK Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) © 2020 Asian Development Bank 6 ADB Avenue, Mandaluyong City, 1550 Metro Manila, Philippines Tel +63 2 8632 4444; Fax +63 2 8636 2444 www.adb.org Some rights reserved. Published in 2020. ISBN: 978-92-9262-480-4 (print); 978-92-9262-481-1 (electronic); 978-92-9262-482-8 (ebook) Publication Stock No. TIM200330-2 DOI: http://dx.doi.org/10.22617/TIM200330-2 The views expressed in this publication are those of the authors and do not necessarily reflect the views and policies of the Asian Development Bank (ADB) or its Board of Governors or the governments they represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The mention of specific companies or products of manufacturers does not imply that they are endorsed or recommended by ADB in preference to others of a similar nature that are not mentioned. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area. This work is available under the Creative Commons Attribution 3.0 IGO license (CC BY 3.0 IGO) https://creativecommons.org/licenses/by/3.0/igo/.
    [Show full text]
  • A New Extended Producer Responsibility System for Compostable Packaging – the Italian Model
    by NatureWorks A new Extended Producer Responsibility system for compostable packaging – the Italian model Mariagiovanna Vetere June 2020 © NatureWorks 2020 1 Agenda by NatureWorks ✓EPR – Extended producer responsibility, what is it and how it works ✓Italian system, CONAI and Corepla ✓The Composting system in Italy, how it works ✓Biorepack – how this new EPR scheme can be a game changer for bioplastics ✓Q&A © NatureWorks 2020 2 About us – NatureWorks LLC by NatureWorks 150,000 MT Ingeo PLA plant in TODAY Blair, NE USA Plants are used to convert CO2 into simple plant sugars We work with GREENHOUSE converters and PLANTS GASES brands at Plant Sugars global level. Naturally Advanced Creating Performance Materials Through Chemistry 3D Printing Electronics & Appliances Coatings Adhesives Fn Intermediates Beauty & Household Food & Beverage Water-borne Hot Melt Surfactants Building & Construction Food Serviceware Solvent-borne Reactive Solvents Cards, Cartons, Non-Food Landscape & Agriculture 100% Solids Binder Resins Food Ingredients Pkg Medical & Hygiene Alkyds & Polyesters Water-borne Fine Chemicals We create performance materials from greenhouse gases © NatureWorks 2020 3 by NatureWorks EPR – Extended Producer Responsibility © NatureWorks 2020 4 EPR – the OECD definition by NatureWorks OECD* defines Extended Producer Responsibility (EPR) as an environmental policy approach in which a producer’s responsibility for a product is extended to the post-consumer stage of a product’s life cycle. An EPR policy is characterised by: 1. the shifting of responsibility (physically and/or economically; fully or partially) upstream toward the producer and away from municipalities; and 2. the provision of incentives to producers to take into account environmental considerations when designing their products.
    [Show full text]
  • Home Composting: Reap a Heap of Benefits
    HOME COMPOSTING: REAP A HEAP OF BENEFITS MICHIGAN’S COMPOSTING LAW Prior to 1995, leaves and grass comprised over 30% of all household solid waste going to landfills and incinerators. Not only is that a lot of space being filled by a clean resource, but yard clippings in WHAT CAN YOU COMPOST? landfills may contribute to methane gas and leachate production which may pollute the air and local water supplies. The moisture in yard waste causes it to burn poorly in incinerators, raising pollution levels, and operating costs. Because of the many problems caused by yard clippings in landfills, Do Compost starting in 1995, yard clippings were banned from Michigan landfills. Yard clippings are defined as Grass Clippings leaves, grass clippings, vegetable or other garden debris, shrubbery, or brush or tree trimmings, less Leaves than 4 feet in length and 2 inches in diameter, that can be converted to compost humus. Weeds & Garden Debris Small brush, twigs A BURNING ISSUE Clean wood ash Another popular method of leaf and brush disposal, backyard burning, pollutes the air, creates a fire Sawdust and wood chips hazard, and is a nuisance to neighbors. Since 1995, Michigan’s solid waste regulations have prohibited Egg shells the open burning of grass clippings and leaves in municipalities having a population of 7,500 or more, Coffee grounds unless the local governing body has specifically enacted an ordinance authorizing it. For a cleaner, Food Waste safer alternative to burning your yard waste, try composting! Don’t Compost WHY COMPOST? Whole branches, logs The best method for getting rid of yard clippings is also the easiest.
    [Show full text]
  • Waste Prevention Evan Blackwell Untitled Eusapia, 2010 Wood Window Frames 36 X 38 X 2.5 Inches
    3 Waste Prevention Evan Blackwell Untitled Eusapia, 2010 Wood window frames 36 x 38 x 2.5 inches Contents Chapter 3 Waste Prevention ............................................... 3 3.1 Recommendations from 1998 Plan and 2004 Amendment ...................................... 3 3.2 Planning Issues for this Update ................................................................................... 5 3.2.1 Zero Waste Resolution ............................................................................................................................... 5 3.2.2 Recession ......................................................................................................................................................... 5 3.2.3 Beyond Waste .................................................................................................................................................. 6 3.2.4 Product Stewardship Legislation ............................................................................................................... 6 3.2.5 Green Jobs ................................................................................................................................................... 10 3.3 Current Programs and Practices .............................................................................. 10 3.3.1 Reuse ............................................................................................................................................................. 10 3.3.2 Sustainable Building ...................................................................................................................................
    [Show full text]