Mitigation of Hazardous Comets and Asteroids

Total Page:16

File Type:pdf, Size:1020Kb

Mitigation of Hazardous Comets and Asteroids MITIGATION OF HAZARDOUS COMETS AND ASTEROIDS It is known that large asteroids and comets can collide with the Earth with severe consequences. Although the chances of a collision in a person’s lifetime are small, collisions are a random process and could occur at any time. This book collects the latest thoughts and ideas of scientists concerned with mitigating the threat of hazardous asteroids and comets. It reviews current knowledge of the population of potential colliders, including their numbers, locations, orbits, and how warning times might be improved. The structural properties and composition of their interi- ors and surfaces are reviewed, and their orbital response to the application of pulses of energy is discussed. Difficulties of operating in space near, or on the surface of, very low mass objects are examined. The book concludes with a discussion of the problems faced in communicating the nature of the impact hazard to the public. Michael Belton is Emeritus Astronomer at the National Optical Astronomy Observatory, Tucson, Arizona, and President of Belton Space Exploration Initia- tives, LLC. Thomas Morgan is a Discipline Scientist in the Office of Space Science at the National Aeronautics and Space Administration, Washington, District of Columbia. Nalin Samarasinha is an Assistant Scientist at the National Optical Astron- omy Observatory, Tucson, Arizona. Donald Yeomans manages NASA’s Near-Earth Object Program Office and JPL’s Solar System Dynamics group at the Jet Propulsion Laboratory of the Cali- fornia Institute of Technology, Pasadena, California. MITIGATION OF HAZARDOUS COMETS AND ASTEROIDS edited by MICHAEL J. S. BELTON Belton Space Exploration Initiatives, LLC THOMAS H. MORGAN National Aeronautics and Space Administration NALIN H. SAMARASINHA National Optical Astronomy Observatory DONALD K. YEOMANS JetPropulsion Laboratory, California Institute of Technology published by the press syndicate of the university of cambridge The Pitt Building, Trumpington Street, Cambridge, United Kingdom cambridge university press The Edinburgh Building, Cambridge, CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarc´on13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org C Cambridge University Press 2004 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2004 Printed in the United Kingdom at the University Press, Cambridge Typeface Times 11/14 pt. System LATEX2ε [tb] A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication data Mitigation of hazardous impacts due to asteroids and comets / Michael J.S. Belton...[etal.], editors. p. cm. Includes bibliographical references and index. ISBN 0 521 82764 7 1. Near-earth asteroids. 2. Asteroids – Collisions with Earth – Prevention. 3. Comets – Collisions with Earth – Prevention. I. Belton, M. J. S. QB651.M57 2004 523.44 – dc22 2003065427 ISBN 0 521 82764 7 hardback The publisher has used its best endeavors to ensure that the URLs for external websites referred to in this book are correct and active at the time of going to press. However, the publisher has no responsibility for the websites and can make no guarantee that a site will remain live or that the content is or will remain appropriate. Contents List of contributors page vii Preface xi Acknowledgments xiii Glossary xiv 1 Recent progress in interpreting the nature of the near-Earth object population 1 William F. Bottke, Jr., Alessandro Morbidelli, and Robert Jedicke 2 Earth impactors: orbital characteristics and warning times 22 Steven R. Chesley and Timothy B. Spahr 3 The role of radar in predicting and preventing asteroid and comet collisions with Earth 38 Steven J. Ostro and Jon D. Giorgini 4 Interior structures for asteroids and cometary nuclei 66 Erik Asphaug 5 What we know and don’t know about surfaces of potentially hazardous small bodies 104 Clark R. Chapman 6 About deflecting asteroids and comets 113 Keith A. Holsapple 7 Scientific requirements for understanding the near-Earth asteroid population 141 Alan W. Harris 8Physical properties of comets and asteroids inferred from fireball observations 153 Mario Di Martino and Alberto Cellino 9 Mitigation technologies and their requirements 167 Christian Gritzner and Ralph Kahle v vi Contents 10 Peering inside near-Earth objects with radio tomography 201 W. Kofman and A. Safaeinili 11 Seismological investigation of asteroid and comet interiors 234 James D. Walker and Walter F. Huebner 12 Lander and penetrator science for near-Earth object mitigation studies 266 A. J. Ball, P. Lognonne,´ K. Seiferlin, M. Patzold,¨ and T. Spohn 13 Optimal interception and deflection of Earth-approaching asteroids using low-thrust electric propulsion 292 Bruce A. Conway 14 Close proximity operations at small bodies: orbiting, hovering, and hopping 313 Daniel J. Scheeres 15 Mission operations in low-gravity regolith and dust 337 Derek Sears, Melissa Franzen, Shauntae Moore, Shawn Nichols, Mikhail Kareev, and Paul Benoit 16 Impacts and the public: communicating the nature of the impact hazard 353 David Morrison, Clark R. Chapman, Duncan Steel, and Richard P. Binzel 17 Towards a national program to remove the threat of hazardous NEOs 391 Michael J. S. Belton Index 411 Contributors Erik Asphaug William F. Bottke, Jr. Earth Science Department Department of Space Studies University of California at Santa Cruz Southwest Research Institute Santa Cruz, CA 95064, USA 1050 Walnut Street Boulder, CO 80302, USA A. J. Ball Planetary and Space Sciences Research Alberto Cellino Institute INAF-Osservatorio Astronomico The Open University di Torino Walton Hall Strada Osservatorio 20 Milton Keynes, MK7 6AA, UK I-10025 Pino Torinese (TO), Italy Michael J. S. Belton Clark R. Chapman Belton Space Exploration Initiatives, Department of Space Studies LLC Southwest Research Institute 430 S. Randolph Way 1050 Walnut Street Tucson, AZ 85716, USA Boulder, CO 80302, USA Paul Benoit Arkansas–Oklahoma Center for Space Steven R. Chesley and Planetary Sciences Jet Propulsion Laboratory Chemistry and Biochemistry MS 301-150 Department 4800 Oak Grove Drive University of Arkansas Pasadena, CA 91109, USA Fayetteville, AR 72701, USA Bruce A. Conway Richard P. Binzel Department of Aeronautical and Massachusetts Institute of Technology Astronautical Engineering 54-410 306 Talbot Laboratory Cambridge, MA 02139, USA MC-236 vii viii List of contributors University of Illinois Robert Jedicke Urbana, IL 61801, USA University of Hawai’i Institute for Astronomy, Mario Di Martino 2680 Woodlawn Drive INAF-Osservatorio Astronomico Honolulu, HI 96822, USA di Torino Strada Osservatorio 20 Ralph Kahle I-10025 Pino Torinese (TO), Italy DLR Institute of Planetary Research Rutherfordstrasse 2 Melissa Franzen D-12489 Berlin, Germany Arkansas–Oklahoma Center for Space and Planetary Sciences Mikhail Kareev Chemistry and Biochemistry Arkansas–Oklahoma Center for Space Department and Planetary Sciences University of Arkansas Chemistry and Biochemistry Fayetteville, AR 72701, USA Department Jon D. Giorgini University of Arkansas Jet Propulsion Laboratory Fayetteville, AR 72701, USA MS 301-150 4800 Oak Grove Drive W. Kofman Pasadena, CA 91109, USA Laboratoire de Plan´etologie Bˆatiment D de Physique Christian Gritzner B.P. 53 Institute for Aerospace Engineering F-38041 Grenoble Cedex 9, Dresden University of Technology France D-01062 Dresden, Germany P. Lognonn´e Alan W. Harris D´epartment des Etudes Spatiales DLR Institute of Planetary Research Institut de Physique du Globe de Paris Rutherfordstrasse 2 4Avenue de Neptune D-12489 Berlin, Germany F-94100 Saint Maur des Foss´esCedex, Keith A. Holsapple France University of Washington Box 352400 Shauntae Moore Seattle, WA 98195, USA Arkansas–Oklahoma Center for Space and Planetary Sciences Walter F. Huebner Chemistry and Biochemistry Southwest Research Institute Department P. O. Drawer 28510 University of Arkansas San Antonio, TX 78228, USA Fayetteville, AR 72701, USA List of contributors ix Alessandro Morbidelli Albertus-Magnus-Platz Centre National des Recherches D-50923 K¨ola,Germany Scientifiques A. Safaeinili Observatoire de la Cˆoted’Azur Jet Propulsion Laboratory BP 4229 MS 300-319 F-06304 Nice Cedex 4, France 4800 Oak Grove Drive Thomas H. Morgan Pasadena, CA 91109, USA National Aeronautics and Space Nalin Samarasinha Administration Headquarters National Optical Astronomy Code SE Observatory 300 E Street, SW 950 North Cherry Avenue Washington, DC 20546, USA Tucson, AZ 85719, USA David Morrison Daniel J. Scheeres National Aeronautics and space Department of Aerospace Engineering Administration The University of Michigan Ames Research Center Ann Arbor, MI 48109, USA MS 200-7 Derek Sears Moffett Field, CA 94035, USA Arkansas–Oklahoma Center for Space Shawn Nichols and Planetary Sciences Arkansas–Oklahoma Center Chemistry and Biochemistry for Space and Planetary Department Sciences University of Arkansas Chemistry and Biochemistry Fayetteville, AR 72701, USA Department K. Seiferlin University of Arkansas Institut f¨urPlanetologie Fayetteville Westf¨alischeWilhelms-Universit¨at AR 72701, USA M¨unster Steven J. Ostro Wilhelm-Klemm-Straße 10 Jet Propulsion Laboratory D-48149 M¨unster, Germany MS 300-233 Timothy B. Spahr 4800 Oak
Recommended publications
  • Lindley Johnson (NASA HQ) – NASA HEOMD – – NASA STMD – Tibor Balint (NASA HQ) – SSERVI – Greg Schmidt (NASA ARC) 19
    September 4, 2014: Planetary Science Subcommittee Nancy Chabot, SBAG Chair 11th SBAG Meeting • July 29-31, 2014: Washington, DC • Highlights of SBAG meeting presentations from major projects • Discussion of findings • New steering committee members • Future meetings 1 NEOWISE Reac,va,on • Reac,vated in Dec 2013, NEOWISE is observing, discovering, and characterizing asteroids & comets using 3.4 and 4.6 µm channels • 7239 minor planets observed, including 157 near-Earth objects (NEOs). • 89 discoveries, including 26 NEOs and 3 comets. • NEO discoveries are large, dark • First data delivery from Reac9vaon: March 2015 to IRSA: • hp://irsa.ipac.caltech.edu/Missions/wise.html • All data from prime WISE/NEOWISE mission are publicly available through IRSA and team Comet P/2014 L2 NEOWISE papers; derived physical proper9es heading to PDS Dawn prepares to encounter Ceres PI: Alan Stern (SwRI) New Horizons Status PM: JHU-APL • Spacecraft is healthy & On-Course for Pluto (Radio) § 1.3x more fuel available for KBO Extended (High-E Plasma) NH Payload Mission phase than originally expected • Payload is healthy and well-calibrated § Finishing final Annual Checkout (ACO-8) • First Pluto OpNav Campaign conducted (UV Spectral) § See image below • Enter final Hibernation on Aug 29th (Vis-Color + IR Spectral) • Pluto Encounter begins on 2015-Jan-15 (Low-E Plasma) • Pluto Closest Approach: 2015-Jul-14 (Pan Imager) Intensive searches with ground-based facilities over the past Pluto OpNav Campaign: 2 years have not yet yielded a KBO target for NH. A 194- Cleanly separate Pluto & orbit Hubble program was started in June; below Charon shows the first potentially targetable KBO found.
    [Show full text]
  • Természet Világa | 2018
    A KISBOLYGÓK VILÁGNAPJÁRA Kis égitestek földközelben 1. RÉSZ A 2018-as év bővelkedik a föld- közeli természetes kis égitestekkel kapcsolatos évfordulókban, illetőleg a kuta- tásukkal, közelebbi megismerésükkel kap- csolatos eseményekben. Ezek a nevezetes és emlékezetes események az első földközeli kisbolygó, az Eros felfedezésének 120. évfor- dulója, az 1908. június 30-i Tunguz-esemény 110. évfordulója. Az ENSZ június 30-át a Kisbolygók Világnapjává (As- teroid Day) nyilvánította, ami egyben a Tunguz-jelen- ségre emlékeztet, és minden évben a kisbolygókról szerzett tudásunk és lehetséges hatásaik ismertetésé- re ad lehetőséget. Tehát ez a nap nem csupán az 1908- as Tunguz-meteor emléknapja, hanem sokkal inkább figyelemfelkeltés kozmikus fenyegetettségünkre, il- letve a kisbolygókkal kapcsolatban eddig szerzett tu- dományos ismeretek minél szélesebb körben történő terjesztésére a nagyközönség számára egészen a hi- asztrofizikusokon kívül egy sor híresség csatlakozott, vatalos döntéshozókig, kormányokig. Tudjuk, hogy a mint például Peter Gabriel vagy Bill Nye. Eddig három Csillagászat Nemzetközi Éve (2009) hivatalos ENSZ-év- alkalommal tartották meg a Kisbolygók Napját, a pro- vé nyilvánítása már 2002-ben felmerült, és hosszas jekt honlapja szerint 78 országban több mint 600 hely- szervezőmunka előzte meg a minősítést. A Fény Éve színen szerveztek programokat, bemutatókat. Ahhoz, esetében gyorsabban zajlottak a folyamatok, a Kisboly- hogy az ENSZ valamilyen napot nemzetközivé nyil- gók Napja esetében pedig úgy tűnik, egészen gyorsan, vánítson, valakinek el is kell indítania a folyamatot. hiszen meglehetősen új kezdeményezésről van szó. Dumitru Prunariu román űrhajós és az Association of Első ízben 2015. június 30-án tartották meg a jeles na- Space Explorers (az űrhajósok nemzetközi egyesülete) pot, a Tunguz-meteor 1908-as pusztítására emlékezve.
    [Show full text]
  • Asteroid Retrieval Feasibility Study
    Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected]
    [Show full text]
  • Copernic Agent Search Results
    Copernic Agent Search Results Search: sonofusion (The exact phrase) Found: 1626 result(s) on _Full.Search Date: 7/17/2010 5:51:35 AM 1. New sonofusion experiment produces results without external neutron source Mar 2009 - ...Rensselaer Polytechnic Institute New sonofusion experiment produces results without...results in 2004, suggesting that "sonofusion" may be a viable approach to producing...technique, which has been dubbed "sonofusion," produces a shock wave t http://www.eurekalert.org/pub_releases/2006-01/rpi-nse012706.php 93% 2. Bubbles feel the heat http://physicsworld.com/cws/article/news/21654 92% 3. Directory:Sonofusion - PESWiki Directory of technologies and resources relating to sonofusion, also known as bubble fusion, which involves room temperature fusion using sound frequencies " ... http://peswiki.com/index.php/Directory:Sonofusion 92% 4. Evidence bubbles over to support tabletop nuclear fusion device The researchers believe the new evidence shows that "sonofusion" generates nuclear reactions by creating tiny bubbles that implode with tremendous force. http://news.uns.purdue.edu/html4ever/2004/0400302.Taleyarkhan.fusion.html 92% 5. Research Uses Sonofusion to Generate Temperatures Hot Enough For Fusion - The Tech Mar 2009 - ...Article Tools E-Mail Print Write the Editor Research Uses Sonofusion to Generate Temperatures Hot Enough For Fusion By Kenneth Chang...tabletop. Putterman's approach is to use sound waves, called sonofusion or bubble fusion, to expand and col http://tech.mit.edu/V127/N7/long5.html 92% 6. Roger Stringham Sonofusion Jets Sonofusion is a developing alternate energy technology that has the potential to replace polluting hydrocarbons which include fossil fuels. The economics for sonofusion appear feasible now with its application to heating large structures.
    [Show full text]
  • Rocks, Soils and Surfaces: Teacher Guide
    National Aeronautics and Space Administration ROCKS, SOILS, AND SURFACES Planetary Sample and Impact Cratering Unit Teacher Guide Goal: This activity is designed to introduce students to rocks, “soils”, and surfaces on planetary worlds, through the exploration of lunar samples collected by Apollo astronauts and the study of the most dominant geologic process across the Solar System, the impact process. Students will gain an understanding of how the study of collected samples and impact craters can help improve our understanding of the history of the Moon, Earth, and our Solar System. Additionally, this activity will enable students to gain experience with scientific practices and the nature of science as they model skills and practices used by professional scientists. Objectives: Students will: 1. Make observations of rocks, “soil”, and surface features 2. Gain background information on rocks, “soil”, and surface features on Earth and the Moon 3. Apply background knowledge related to rocks, soils, and surfaces on Earth toward gaining a better understanding of these aspects of the Moon. This includes having students: a. Identify common lunar surface features b. Create a model lunar surface c. Identify the three classifications of lunar rocks d. Simulate the development of lunar regolith e. Identify the causes and formation of impact craters 4. Design and conduct an experiment on impact craters 5. Create a plan to investigate craters on Earth and on the Moon 6. Gain an understanding of the nature of science and scientific practices by: a. Making initial observations b. Asking preliminary questions c. Applying background knowledge d. Displaying data e. Analyzing and interpreting data Grade Level: 6 – 8* *Grade Level Adaptations: This activity can also be used with students in grades 5 and 9-12.
    [Show full text]
  • Nördlingen 2010: the Ries Crater, the Moon, and the Future of Human Space Exploration, P
    Program and Abstract Volume LPI Contribution No. 1559 The Ries Crater, the Moon, and the Future of Human Space Exploration June 25–27, 2010 Nördlingen, Germany Sponsors Museum für Naturkunde – Leibniz-Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Germany Institut für Planetologie, University of Münster, Germany Deutsches Zentrum für Luft- und Raumfahrt DLR (German Aerospace Center) at Berlin, Germany Institute of Geoscience, University of Freiburg, Germany Lunar and Planetary Institute (LPI), Houston, USA Deutsche Forschungsgemeinschaft (German Science Foundation), Bonn, Germany Barringer Crater Company, Decatur, USA Meteoritical Society, USA City of Nördlingen, Germany Ries Crater Museum, Nördlingen, Germany Community of Otting, Ries, Germany Märker Cement Factory, Harburg, Germany Local Organization City of Nördlingen Museum für Naturkunde – Leibniz- Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin Ries Crater Museum, Nördlingen Center of Ries Crater and Impact Research (ZERIN), Nördlingen Society Friends of the Ries Crater Museum, Nördlingen Community of Otting, Ries Märker Cement Factory, Harburg Organizing and Program Committee Prof. Dieter Stöffler, Museum für Naturkunde, Berlin Prof. Wolf Uwe Reimold, Museum für Naturkunde, Berlin Dr. Kai Wünnemann, Museum für Naturkunde, Berlin Hermann Faul, First Major of Nördlingen Prof. Thomas Kenkmann, Freiburg Prof. Harald Hiesinger, Münster Prof. Tilman Spohn, DLR, Berlin Dr. Ulrich Köhler, DLR, Berlin Dr. David Kring, LPI, Houston Dr. Axel Wittmann, LPI, Houston Gisela Pösges, Ries Crater Museum, Nördlingen Ralf Barfeld, Chair, Society Friends of the Ries Crater Museum Lunar and Planetary Institute LPI Contribution No. 1559 Compiled in 2010 by LUNAR AND PLANETARY INSTITUTE The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration.
    [Show full text]
  • Required Deflection Impulses As a Function of Time Before Impact for Earth-Impacting Asteroids
    Icarus 347 (2020) 113792 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Required deflection impulses as a function of time before impact for Earth-impacting asteroids Sarah Greenstreet a,b,<, Ed Lu a, Mike Loucks a,c, John Carrico a,c, Tatiana Kichkaylo a, Mario Juri¢ b a Asteroid Institute, 20 Sunnyside Ave, Suite 427, Mill Valley, CA 94941, USA b Department of Astronomy and the DIRAC Institute, University of Washington, 3910 15th Avenue, NE, Seattle, WA 98195, USA c Space Exploration Engineering LLC, 687 Chinook Way, Friday Harbor, WA 98250, USA ARTICLEINFO ABSTRACT Keywords: For any asteroid on an impact trajectory, the amount of time prior to impact a deflection can be implemented Asteroids can drastically change the amount of deflection impulse required. In this study we use the precision cloud- Dynamics based asteroid orbit propagation and targeting capabilities of the Asteroid Institute's Asteroid Decision Analysis and Mapping (ADAM) platform to investigate the distribution of deflection 훥푣 required to divert asteroids on Earth-impacting trajectories (Chesley and Spahr, 2004) as a function of time prior to impact for 10,000 synthetic impacting asteroids. We target a miss distance of one Earth radius above the surface of the Earth and calculate the distribution of deflection 훥푣 required if applied 10, 20, 30, 40, and 50 years prior to impact. We find that the median required deflection impulse decreases as approximately t*1 for increasing time before impact (Ahrens and Harris, 1992), where the median required 훥푣 is 1.4 cm/s, 0.76 cm/s, 0.55 cm/s, 0.46 cm/s, and 0.38 cm/s for 10, 20, 30, 40, & 50 years before impact, respectively.
    [Show full text]
  • The Subsurface Structure of Oblique Impact Craters
    The subsurface structure of oblique impact craters Dissertation vorgelegt von Dipl.-Geol. Michael H. Poelchau vom Fachbereich Geowissenschaften der Freien Universität Berlin zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Berlin, 2010 The subsurface structure of oblique impact craters Dissertation vorgelegt von Dipl.-Geol. Michael H. Poelchau vom Fachbereich Geowissenschaften der Freien Universität Berlin zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Berlin, 2010 Gutachter: 1. PD Dr. Thomas Kenkmann 2. Prof. Wolf-Uwe Reimold Tag der Disputation: 23.02.2010 Statement regarding the contributions of the author and others to this thesis This thesis is comprised of three published, peer-reviewed articles and one submitted manuscript, which each form separate chapters within this thesis. The chapters “Introduction” and “General Conclusions” were written especially for this thesis. The PhD candidate is the first author of two of these articles, and the second author of the third article. The PhD candidate is also the first author of a manuscript currently submitted to Earth and Planetary Science Letters. Therefore, these four chapters have their own introduction, methodology, discussion, conclusions and references. The articles and manuscripts used in this thesis are the following: Poelchau, M. H., and T. Kenkmann, 2008. Asymmetric signatures in simple craters as an indicator for an oblique impact direction, Meteoritcal and Planetary Science, 43, 2059-2072. Poelchau M. H., Kenkmann T. and Kring D. A., 2009. Rim uplift and crater shape in Meteor Crater: the effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research, 114, E01006, doi:10.1029/2008JE003235. Kenkmann, T.
    [Show full text]
  • (2000) Forging Asteroid-Meteorite Relationships Through Reflectance
    Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta.
    [Show full text]
  • How to Prevent Another Chelyabinsk | Astronomy Now 7/30/15, 1:44 PM
    How to prevent another Chelyabinsk | Astronomy Now 7/30/15, 1:44 PM Twitter Facebook HOME PLUTO THE MAGAZINE NEWS OBSERVING REVIEWS SPACEFLIGHT NOW STORE Breaking News 28 July 2015 in News: Fossil globular star clusters reveal their age 30 July 2015 in News: “Failed stars” host powerful auroral displays How to prevent30 July 2015 in News: another Unusual red arcs Chelyabinsk discovered on icy Saturnian moon 29 July 2015 in News: The heart of Pluto in high-resolution Posted on 14 February 2015 by Keith Cooper 29 July 2015 in News: New names and insights at dwarf planet Ceres Like 1.2k Tweet 70 10 After the devastation wreaked by the Chelyabinsk asteroid airburst on 15th February 2013, two questions were on everybody’s lips. One, “why didn’t we see it coming?” And two, “How can we prevent similar events in the future?” Reviews Although NASA have accomplished their Vernonscope Deluxe 1.25-inch goal of finding more than 90 percent of all Binoviewer the near-Earth asteroids larger than a kilometre across, there are still many more smaller asteroids unaccounted for. They Alan Gee Telecompressor Mk II may not be the kind of asteroid that would cause enough damage to drastically set back civilisation should they collide with An artist’s impression of an Earth-crossing asteroid. The Secret Life of Space AN artwork by Greg Smye-Rumsby Earth, but they could certainly wipe out a large chunk of a city if they hit. Whereas the larger asteroids are easier to detect but rarely collide with Earth, the smaller Moon: Nature and Culture asteroids are more difficult to detect and they hit a lot more often.
    [Show full text]
  • View the Murchison Georegion Brochure
    Discover Ancient lands Brilliant skies Cue–Dalgaranga Rd, 47 km southwest of Cue | Latitude: -27.398171, Longitude: 117.467870 2. Wilgie Mia With 30,000 years of activity, Wilgie Mia is the oldest continuous mining operation in the world. No Known also as Thuwarri Thaa – The Place of Red Ochre – it holds camping the honour of being largest and deepest underground Aboriginal ochre mine in Australia. Ochre is a natural earth pigment containing iron oxide and was formed in the Weld Range 30–65 million years ago. It comes in various colours including red, yellow and green. Symbol When used as body paint the red ochre sparkled against the light name from a fire and was seen as ‘magical’. Ochre was and still is an important part of Aboriginal culture used in ceremonies, medicines, and rock and body paintings. The red ochre from Wilgie Mia was traded across Australia as far as Ravensthorpe, the Kimberley and Queensland, as well as into Indonesia in what is believed to be the first example of international trade. Wilgie Mia was declared a protected and restricted site in 1973, acknowledging the importance it has to Aboriginal culture. Trail Guidebook i Download the app or visit the website to get the most out of your Murchison GeoRegion experience. App Store: Murchison GeoRegion | Google Play: Murchison GeoRegion www.murchisongeoregion.com Contents The ABC of geotourism ................................................................................................. 1 Acknowledgement of Country .....................................................................................1
    [Show full text]
  • Compiled Thesis
    SPACE ROCKS: a series of papers on METEORITES AND ASTEROIDS by Nina Louise Hooper A thesis submitted to the Department of Astronomy in partial fulfillment of the requirement for the Bachelor’s Degree with Honors Harvard College 8 April 2016 Of all investments into the future, the conquest of space demands the greatest efforts and the longest-term commitment, but it also offers the greatest reward: none less than a universe. — Daniel Christlein !ii Acknowledgements I finished this senior thesis aided by the profound effort and commitment of my thesis advisor, Martin Elvis. I am extremely grateful for him countless hours of discussions and detailed feedback on all stages of this research. I am also grateful for the remarkable people at Harvard-Smithsonian Center for Astrophysics of whom I asked many questions and who took the time to help me. Special thanks go to Warren Brown for his guidance with spectral reduction processes in IRAF, Francesca DeMeo for her assistance in the spectral classification of our Near Earth Asteroids and Samurdha Jayasinghe and for helping me write my data analysis script in python. I thank Dan Holmqvist for being an incredibly helpful and supportive presence throughout this project. I thank David Charbonneau, Alicia Soderberg and the members of my senior thesis class of astrophysics concentrators for their support, guidance and feedback throughout the past year. This research was funded in part by the Harvard Undergraduate Science Research Program. !iii Abstract The subject of this work is the compositions of asteroids and meteorites. Studies of the composition of small Solar System bodies are fundamental to theories of planet formation.
    [Show full text]