Mitigation of Hazardous Comets and Asteroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lindley Johnson (NASA HQ) – NASA HEOMD – – NASA STMD – Tibor Balint (NASA HQ) – SSERVI – Greg Schmidt (NASA ARC) 19
September 4, 2014: Planetary Science Subcommittee Nancy Chabot, SBAG Chair 11th SBAG Meeting • July 29-31, 2014: Washington, DC • Highlights of SBAG meeting presentations from major projects • Discussion of findings • New steering committee members • Future meetings 1 NEOWISE Reac,va,on • Reac,vated in Dec 2013, NEOWISE is observing, discovering, and characterizing asteroids & comets using 3.4 and 4.6 µm channels • 7239 minor planets observed, including 157 near-Earth objects (NEOs). • 89 discoveries, including 26 NEOs and 3 comets. • NEO discoveries are large, dark • First data delivery from Reac9vaon: March 2015 to IRSA: • hp://irsa.ipac.caltech.edu/Missions/wise.html • All data from prime WISE/NEOWISE mission are publicly available through IRSA and team Comet P/2014 L2 NEOWISE papers; derived physical proper9es heading to PDS Dawn prepares to encounter Ceres PI: Alan Stern (SwRI) New Horizons Status PM: JHU-APL • Spacecraft is healthy & On-Course for Pluto (Radio) § 1.3x more fuel available for KBO Extended (High-E Plasma) NH Payload Mission phase than originally expected • Payload is healthy and well-calibrated § Finishing final Annual Checkout (ACO-8) • First Pluto OpNav Campaign conducted (UV Spectral) § See image below • Enter final Hibernation on Aug 29th (Vis-Color + IR Spectral) • Pluto Encounter begins on 2015-Jan-15 (Low-E Plasma) • Pluto Closest Approach: 2015-Jul-14 (Pan Imager) Intensive searches with ground-based facilities over the past Pluto OpNav Campaign: 2 years have not yet yielded a KBO target for NH. A 194- Cleanly separate Pluto & orbit Hubble program was started in June; below Charon shows the first potentially targetable KBO found. -
Természet Világa | 2018
A KISBOLYGÓK VILÁGNAPJÁRA Kis égitestek földközelben 1. RÉSZ A 2018-as év bővelkedik a föld- közeli természetes kis égitestekkel kapcsolatos évfordulókban, illetőleg a kuta- tásukkal, közelebbi megismerésükkel kap- csolatos eseményekben. Ezek a nevezetes és emlékezetes események az első földközeli kisbolygó, az Eros felfedezésének 120. évfor- dulója, az 1908. június 30-i Tunguz-esemény 110. évfordulója. Az ENSZ június 30-át a Kisbolygók Világnapjává (As- teroid Day) nyilvánította, ami egyben a Tunguz-jelen- ségre emlékeztet, és minden évben a kisbolygókról szerzett tudásunk és lehetséges hatásaik ismertetésé- re ad lehetőséget. Tehát ez a nap nem csupán az 1908- as Tunguz-meteor emléknapja, hanem sokkal inkább figyelemfelkeltés kozmikus fenyegetettségünkre, il- letve a kisbolygókkal kapcsolatban eddig szerzett tu- dományos ismeretek minél szélesebb körben történő terjesztésére a nagyközönség számára egészen a hi- asztrofizikusokon kívül egy sor híresség csatlakozott, vatalos döntéshozókig, kormányokig. Tudjuk, hogy a mint például Peter Gabriel vagy Bill Nye. Eddig három Csillagászat Nemzetközi Éve (2009) hivatalos ENSZ-év- alkalommal tartották meg a Kisbolygók Napját, a pro- vé nyilvánítása már 2002-ben felmerült, és hosszas jekt honlapja szerint 78 országban több mint 600 hely- szervezőmunka előzte meg a minősítést. A Fény Éve színen szerveztek programokat, bemutatókat. Ahhoz, esetében gyorsabban zajlottak a folyamatok, a Kisboly- hogy az ENSZ valamilyen napot nemzetközivé nyil- gók Napja esetében pedig úgy tűnik, egészen gyorsan, vánítson, valakinek el is kell indítania a folyamatot. hiszen meglehetősen új kezdeményezésről van szó. Dumitru Prunariu román űrhajós és az Association of Első ízben 2015. június 30-án tartották meg a jeles na- Space Explorers (az űrhajósok nemzetközi egyesülete) pot, a Tunguz-meteor 1908-as pusztítására emlékezve. -
Asteroid Retrieval Feasibility Study
Asteroid Retrieval Feasibility Study 2 April 2012 Prepared for the: Keck Institute for Space Studies California Institute of Technology Jet Propulsion Laboratory Pasadena, California 1 2 Authors and Study Participants NAME Organization E-Mail Signature John Brophy Co-Leader / NASA JPL / Caltech [email protected] Fred Culick Co-Leader / Caltech [email protected] Co -Leader / The Planetary Louis Friedman [email protected] Society Carlton Allen NASA JSC [email protected] David Baughman Naval Postgraduate School [email protected] NASA ARC/Carnegie Mellon Julie Bellerose [email protected] University Bruce Betts The Planetary Society [email protected] Mike Brown Caltech [email protected] Michael Busch UCLA [email protected] John Casani NASA JPL [email protected] Marcello Coradini ESA [email protected] John Dankanich NASA GRC [email protected] Paul Dimotakis Caltech [email protected] Harvard -Smithsonian Center for Martin Elvis [email protected] Astrophysics Ian Garrick-Bethel UCSC [email protected] Bob Gershman NASA JPL [email protected] Florida Institute for Human and Tom Jones [email protected] Machine Cognition Damon Landau NASA JPL [email protected] Chris Lewicki Arkyd Astronautics [email protected] John Lewis University of Arizona [email protected] Pedro Llanos USC [email protected] Mark Lupisella NASA GSFC [email protected] Dan Mazanek NASA LaRC [email protected] Prakhar Mehrotra Caltech [email protected] -
Copernic Agent Search Results
Copernic Agent Search Results Search: sonofusion (The exact phrase) Found: 1626 result(s) on _Full.Search Date: 7/17/2010 5:51:35 AM 1. New sonofusion experiment produces results without external neutron source Mar 2009 - ...Rensselaer Polytechnic Institute New sonofusion experiment produces results without...results in 2004, suggesting that "sonofusion" may be a viable approach to producing...technique, which has been dubbed "sonofusion," produces a shock wave t http://www.eurekalert.org/pub_releases/2006-01/rpi-nse012706.php 93% 2. Bubbles feel the heat http://physicsworld.com/cws/article/news/21654 92% 3. Directory:Sonofusion - PESWiki Directory of technologies and resources relating to sonofusion, also known as bubble fusion, which involves room temperature fusion using sound frequencies " ... http://peswiki.com/index.php/Directory:Sonofusion 92% 4. Evidence bubbles over to support tabletop nuclear fusion device The researchers believe the new evidence shows that "sonofusion" generates nuclear reactions by creating tiny bubbles that implode with tremendous force. http://news.uns.purdue.edu/html4ever/2004/0400302.Taleyarkhan.fusion.html 92% 5. Research Uses Sonofusion to Generate Temperatures Hot Enough For Fusion - The Tech Mar 2009 - ...Article Tools E-Mail Print Write the Editor Research Uses Sonofusion to Generate Temperatures Hot Enough For Fusion By Kenneth Chang...tabletop. Putterman's approach is to use sound waves, called sonofusion or bubble fusion, to expand and col http://tech.mit.edu/V127/N7/long5.html 92% 6. Roger Stringham Sonofusion Jets Sonofusion is a developing alternate energy technology that has the potential to replace polluting hydrocarbons which include fossil fuels. The economics for sonofusion appear feasible now with its application to heating large structures. -
Rocks, Soils and Surfaces: Teacher Guide
National Aeronautics and Space Administration ROCKS, SOILS, AND SURFACES Planetary Sample and Impact Cratering Unit Teacher Guide Goal: This activity is designed to introduce students to rocks, “soils”, and surfaces on planetary worlds, through the exploration of lunar samples collected by Apollo astronauts and the study of the most dominant geologic process across the Solar System, the impact process. Students will gain an understanding of how the study of collected samples and impact craters can help improve our understanding of the history of the Moon, Earth, and our Solar System. Additionally, this activity will enable students to gain experience with scientific practices and the nature of science as they model skills and practices used by professional scientists. Objectives: Students will: 1. Make observations of rocks, “soil”, and surface features 2. Gain background information on rocks, “soil”, and surface features on Earth and the Moon 3. Apply background knowledge related to rocks, soils, and surfaces on Earth toward gaining a better understanding of these aspects of the Moon. This includes having students: a. Identify common lunar surface features b. Create a model lunar surface c. Identify the three classifications of lunar rocks d. Simulate the development of lunar regolith e. Identify the causes and formation of impact craters 4. Design and conduct an experiment on impact craters 5. Create a plan to investigate craters on Earth and on the Moon 6. Gain an understanding of the nature of science and scientific practices by: a. Making initial observations b. Asking preliminary questions c. Applying background knowledge d. Displaying data e. Analyzing and interpreting data Grade Level: 6 – 8* *Grade Level Adaptations: This activity can also be used with students in grades 5 and 9-12. -
Nördlingen 2010: the Ries Crater, the Moon, and the Future of Human Space Exploration, P
Program and Abstract Volume LPI Contribution No. 1559 The Ries Crater, the Moon, and the Future of Human Space Exploration June 25–27, 2010 Nördlingen, Germany Sponsors Museum für Naturkunde – Leibniz-Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Germany Institut für Planetologie, University of Münster, Germany Deutsches Zentrum für Luft- und Raumfahrt DLR (German Aerospace Center) at Berlin, Germany Institute of Geoscience, University of Freiburg, Germany Lunar and Planetary Institute (LPI), Houston, USA Deutsche Forschungsgemeinschaft (German Science Foundation), Bonn, Germany Barringer Crater Company, Decatur, USA Meteoritical Society, USA City of Nördlingen, Germany Ries Crater Museum, Nördlingen, Germany Community of Otting, Ries, Germany Märker Cement Factory, Harburg, Germany Local Organization City of Nördlingen Museum für Naturkunde – Leibniz- Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin Ries Crater Museum, Nördlingen Center of Ries Crater and Impact Research (ZERIN), Nördlingen Society Friends of the Ries Crater Museum, Nördlingen Community of Otting, Ries Märker Cement Factory, Harburg Organizing and Program Committee Prof. Dieter Stöffler, Museum für Naturkunde, Berlin Prof. Wolf Uwe Reimold, Museum für Naturkunde, Berlin Dr. Kai Wünnemann, Museum für Naturkunde, Berlin Hermann Faul, First Major of Nördlingen Prof. Thomas Kenkmann, Freiburg Prof. Harald Hiesinger, Münster Prof. Tilman Spohn, DLR, Berlin Dr. Ulrich Köhler, DLR, Berlin Dr. David Kring, LPI, Houston Dr. Axel Wittmann, LPI, Houston Gisela Pösges, Ries Crater Museum, Nördlingen Ralf Barfeld, Chair, Society Friends of the Ries Crater Museum Lunar and Planetary Institute LPI Contribution No. 1559 Compiled in 2010 by LUNAR AND PLANETARY INSTITUTE The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. -
Required Deflection Impulses As a Function of Time Before Impact for Earth-Impacting Asteroids
Icarus 347 (2020) 113792 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Required deflection impulses as a function of time before impact for Earth-impacting asteroids Sarah Greenstreet a,b,<, Ed Lu a, Mike Loucks a,c, John Carrico a,c, Tatiana Kichkaylo a, Mario Juri¢ b a Asteroid Institute, 20 Sunnyside Ave, Suite 427, Mill Valley, CA 94941, USA b Department of Astronomy and the DIRAC Institute, University of Washington, 3910 15th Avenue, NE, Seattle, WA 98195, USA c Space Exploration Engineering LLC, 687 Chinook Way, Friday Harbor, WA 98250, USA ARTICLEINFO ABSTRACT Keywords: For any asteroid on an impact trajectory, the amount of time prior to impact a deflection can be implemented Asteroids can drastically change the amount of deflection impulse required. In this study we use the precision cloud- Dynamics based asteroid orbit propagation and targeting capabilities of the Asteroid Institute's Asteroid Decision Analysis and Mapping (ADAM) platform to investigate the distribution of deflection 훥푣 required to divert asteroids on Earth-impacting trajectories (Chesley and Spahr, 2004) as a function of time prior to impact for 10,000 synthetic impacting asteroids. We target a miss distance of one Earth radius above the surface of the Earth and calculate the distribution of deflection 훥푣 required if applied 10, 20, 30, 40, and 50 years prior to impact. We find that the median required deflection impulse decreases as approximately t*1 for increasing time before impact (Ahrens and Harris, 1992), where the median required 훥푣 is 1.4 cm/s, 0.76 cm/s, 0.55 cm/s, 0.46 cm/s, and 0.38 cm/s for 10, 20, 30, 40, & 50 years before impact, respectively. -
The Subsurface Structure of Oblique Impact Craters
The subsurface structure of oblique impact craters Dissertation vorgelegt von Dipl.-Geol. Michael H. Poelchau vom Fachbereich Geowissenschaften der Freien Universität Berlin zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Berlin, 2010 The subsurface structure of oblique impact craters Dissertation vorgelegt von Dipl.-Geol. Michael H. Poelchau vom Fachbereich Geowissenschaften der Freien Universität Berlin zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Berlin, 2010 Gutachter: 1. PD Dr. Thomas Kenkmann 2. Prof. Wolf-Uwe Reimold Tag der Disputation: 23.02.2010 Statement regarding the contributions of the author and others to this thesis This thesis is comprised of three published, peer-reviewed articles and one submitted manuscript, which each form separate chapters within this thesis. The chapters “Introduction” and “General Conclusions” were written especially for this thesis. The PhD candidate is the first author of two of these articles, and the second author of the third article. The PhD candidate is also the first author of a manuscript currently submitted to Earth and Planetary Science Letters. Therefore, these four chapters have their own introduction, methodology, discussion, conclusions and references. The articles and manuscripts used in this thesis are the following: Poelchau, M. H., and T. Kenkmann, 2008. Asymmetric signatures in simple craters as an indicator for an oblique impact direction, Meteoritcal and Planetary Science, 43, 2059-2072. Poelchau M. H., Kenkmann T. and Kring D. A., 2009. Rim uplift and crater shape in Meteor Crater: the effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research, 114, E01006, doi:10.1029/2008JE003235. Kenkmann, T. -
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta. -
How to Prevent Another Chelyabinsk | Astronomy Now 7/30/15, 1:44 PM
How to prevent another Chelyabinsk | Astronomy Now 7/30/15, 1:44 PM Twitter Facebook HOME PLUTO THE MAGAZINE NEWS OBSERVING REVIEWS SPACEFLIGHT NOW STORE Breaking News 28 July 2015 in News: Fossil globular star clusters reveal their age 30 July 2015 in News: “Failed stars” host powerful auroral displays How to prevent30 July 2015 in News: another Unusual red arcs Chelyabinsk discovered on icy Saturnian moon 29 July 2015 in News: The heart of Pluto in high-resolution Posted on 14 February 2015 by Keith Cooper 29 July 2015 in News: New names and insights at dwarf planet Ceres Like 1.2k Tweet 70 10 After the devastation wreaked by the Chelyabinsk asteroid airburst on 15th February 2013, two questions were on everybody’s lips. One, “why didn’t we see it coming?” And two, “How can we prevent similar events in the future?” Reviews Although NASA have accomplished their Vernonscope Deluxe 1.25-inch goal of finding more than 90 percent of all Binoviewer the near-Earth asteroids larger than a kilometre across, there are still many more smaller asteroids unaccounted for. They Alan Gee Telecompressor Mk II may not be the kind of asteroid that would cause enough damage to drastically set back civilisation should they collide with An artist’s impression of an Earth-crossing asteroid. The Secret Life of Space AN artwork by Greg Smye-Rumsby Earth, but they could certainly wipe out a large chunk of a city if they hit. Whereas the larger asteroids are easier to detect but rarely collide with Earth, the smaller Moon: Nature and Culture asteroids are more difficult to detect and they hit a lot more often. -
View the Murchison Georegion Brochure
Discover Ancient lands Brilliant skies Cue–Dalgaranga Rd, 47 km southwest of Cue | Latitude: -27.398171, Longitude: 117.467870 2. Wilgie Mia With 30,000 years of activity, Wilgie Mia is the oldest continuous mining operation in the world. No Known also as Thuwarri Thaa – The Place of Red Ochre – it holds camping the honour of being largest and deepest underground Aboriginal ochre mine in Australia. Ochre is a natural earth pigment containing iron oxide and was formed in the Weld Range 30–65 million years ago. It comes in various colours including red, yellow and green. Symbol When used as body paint the red ochre sparkled against the light name from a fire and was seen as ‘magical’. Ochre was and still is an important part of Aboriginal culture used in ceremonies, medicines, and rock and body paintings. The red ochre from Wilgie Mia was traded across Australia as far as Ravensthorpe, the Kimberley and Queensland, as well as into Indonesia in what is believed to be the first example of international trade. Wilgie Mia was declared a protected and restricted site in 1973, acknowledging the importance it has to Aboriginal culture. Trail Guidebook i Download the app or visit the website to get the most out of your Murchison GeoRegion experience. App Store: Murchison GeoRegion | Google Play: Murchison GeoRegion www.murchisongeoregion.com Contents The ABC of geotourism ................................................................................................. 1 Acknowledgement of Country .....................................................................................1 -
Compiled Thesis
SPACE ROCKS: a series of papers on METEORITES AND ASTEROIDS by Nina Louise Hooper A thesis submitted to the Department of Astronomy in partial fulfillment of the requirement for the Bachelor’s Degree with Honors Harvard College 8 April 2016 Of all investments into the future, the conquest of space demands the greatest efforts and the longest-term commitment, but it also offers the greatest reward: none less than a universe. — Daniel Christlein !ii Acknowledgements I finished this senior thesis aided by the profound effort and commitment of my thesis advisor, Martin Elvis. I am extremely grateful for him countless hours of discussions and detailed feedback on all stages of this research. I am also grateful for the remarkable people at Harvard-Smithsonian Center for Astrophysics of whom I asked many questions and who took the time to help me. Special thanks go to Warren Brown for his guidance with spectral reduction processes in IRAF, Francesca DeMeo for her assistance in the spectral classification of our Near Earth Asteroids and Samurdha Jayasinghe and for helping me write my data analysis script in python. I thank Dan Holmqvist for being an incredibly helpful and supportive presence throughout this project. I thank David Charbonneau, Alicia Soderberg and the members of my senior thesis class of astrophysics concentrators for their support, guidance and feedback throughout the past year. This research was funded in part by the Harvard Undergraduate Science Research Program. !iii Abstract The subject of this work is the compositions of asteroids and meteorites. Studies of the composition of small Solar System bodies are fundamental to theories of planet formation.