Amino Acid Residues Implicated in the Interaction of Melanocortin Ligands and Their Receptors: a Study of MC2R Selectivity

Total Page:16

File Type:pdf, Size:1020Kb

Amino Acid Residues Implicated in the Interaction of Melanocortin Ligands and Their Receptors: a Study of MC2R Selectivity University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2009 Amino Acid Residues Implicated in the Interaction of Melanocortin Ligands and Their Receptors: A Study of MC2R Selectivity Kristopher D. Veo University of Denver Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Biology Commons, and the Molecular Biology Commons Recommended Citation Veo, Kristopher D., "Amino Acid Residues Implicated in the Interaction of Melanocortin Ligands and Their Receptors: A Study of MC2R Selectivity" (2009). Electronic Theses and Dissertations. 945. https://digitalcommons.du.edu/etd/945 This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. Amino Acid Residues Implicated in the Interaction of Melanocortin Ligands and their Receptors: A Study of MC2R Selectivity __________ A Thesis Presented to The Faculty of Natural Sciences and Mathematics University of Denver __________ In Partial Fulfillment of the Requirements for the Degree Master’s of Science __________ by Kristopher D. Veo August 2009 Advisor: Dr. Robert M. Dores Author: Kristopher D. Veo Title: Amino acid residues implicated in the interaction of Melanocortin ligands and their receptors: A study of MC2R selectivity Advisor: Dr. Robert M. Dores Degree Date: August 2009 ABSTRACT Melanocortin receptor ligand selectivity has been a question not easily answered. The inability to functionally express melanocortin 2 receptor (MC2R) has inhibited the study of why MC2R is only stimulated by ACTH, a melanocortin hormone. With the recent discovery of the MC2R accessory protein (MRAP), creating a heterologous system is now feasible. Using a general cell line like CHO-K1 cells, which do not express endogenous MCRs, we were able to create a heterologous expression system and test the selectivity of MC2R using analog variants of ACTH(1-24). Our results indicate an amino acid requirement in the C-terminal portion of ACTH(1-24) for activation, which supports the 2-step method of activation hypothesized for MC2R. This site, the tetra basic cleavage site, when altered does not stimulate cAMP production and does not compete with ACTH(1-24) for binding. We also demonstrate the potential for a non-mammalian MC2R system in cloning full length Silurana tropicalis MC2R and completed localization studies with this system with MRAP using CHO-K1 cells. ii Table of Contents Introduction.......................................................................................................................1 Overview...............................................................................................................1 Melanocortin Receptor Family .............................................................................1 POMC ...................................................................................................................2 Cloning the First MCRs........................................................................................5 MCR Locations and Functions .............................................................................6 MCR Gene Evolution ...........................................................................................6 MCR Classification.............................................................................................11 MRAP .................................................................................................................15 MC2R Selectivity Issues.....................................................................................15 MC2R Activation Hypothesis.............................................................................16 Goals ...................................................................................................................20 Materials and Methods....................................................................................................22 Cloning MC2R....................................................................................................22 Human MC2R.....................................................................................................24 MC2R and MRAP Co-Localization Studies.......................................................30 Mammalian Cell Nucleofection..........................................................................33 cAMP EIA Assay................................................................................................33 Results ............................................................................................................................35 Studies using an endogenous MCR system: GT1-7 cell line and MC4R...........35 Initial MC2R endogenous system and heterologous expression system ............42 Human and Frog MC2R Localization with MRAP in CHO cells ......................45 Activation Assay using CHO cells and hMC2R+MRAP ...................................46 CHO/hMC2R+MRAP Ligand Competition Assays...........................................52 Discussion.......................................................................................................................58 GT1-7 ACTH(1-24) & NDP-MSH DRCs ..........................................................59 GT1-7 Experiments.............................................................................................60 INS-1 & Cloudman M3 Experiments .................................................................62 CHO Heterologous System Localization Experiments.......................................63 CHO Heterologous System DRCs......................................................................64 CHO Heterologous System Single Analog Activation Experiments..................64 CHO Heterologous System Competition Assays ...............................................66 Future Directions ................................................................................................67 Bibliography ...................................................................................................................71 iii INTRODUCTION Overview: Ligand selectivity exhibited by receptors in the melanocortin receptor family is a question that has been hard to answer until recently. Without the discovery of the MC2R accessory protein (MRAP), obtaining functional MC2R in a heterologous system was nearly impossible. The focus of this thesis is three-fold: first, using endogenous expression systems to analyze a representative from each MCR class that will allow for functional studies in native surroundings. The second goal was creation a heterologous system for functional expression system of MC2R that can be easily cultured. The final goal was to look at the interaction and the ligand sequence requirement for activation of MCRs will be investigated using analog variants of ACTH hormone. Melanocortin Receptor Family: Melanocortin receptors (MCRs) are a family of G-protein coupled receptors (GPCR) activated by melanocortin peptides (Cone, 2006). The G protein-coupled receptor superfamily is divided into five different classes (Class A to Class E/F; Fredriksson et al., 2003). Class A is the rhodopsin or rhodopsin-like family, which includes the melanocortin receptors. Other families of GPCRs are adhesion, secretin, glutamate, and frizzled/TAS2. A unifying feature of the GPCRs is that each receptor has seven membrane spanning domains that are connected by internal and external polypeptide loop domains (Gantz and Fong, 2003). While the 3-dimensional structure of 1 melanocortin receptors has not been resolved, the structures of other GPCRs have been determined, such as the bovine rhodopsin and the human β-adrenergic receptor (Cone, 2006). GPCRs typically activate second messenger systems in order to relay messages the receptors receive. Melanocortin receptors are no different in that they relay messages using the adenylate cyclase/cAMP messenger pathway to propagate a biological response (Gantz and Fong, 2003). Another interesting feature about melanocortin receptor stimulation is the association of melanocortin signaling to intracellular systems that 2+ increase intracellular Ca via activation of IP3 (Konda et al., 1994), and induce either janus kinase/signal transducer and activator of transcription (Buggy, 1998), the influx of extracellular Ca2+ (Kojima et al., 1985), as well as activation of MAP kinase (Englaro et al., 1995), and other PKCs (Kapas et al., 1995). The activation of MCRs is derived from proopiomelanocortin, or POMC, which is the common precursor for different stimulatory ligands that activate melanocortin receptors. POMC: The melanocortin peptides come from a large preprohormone complex called proopiomelanocortin (or POMC) that is cleaved into many hormone products that may or may not undergo further processing (Pritchard et al., 2002; Fig. 1). Processing of the POMC gene product is tissue specific in that main cleavage products are made via processing by prohormone convertase 1/3 (PC1/3) in the anterior lobe of the pituitary and a distinct set of end-products can be generated from this precursor in the intermediate pituitary and hypothalamus through the action of prohormone convertases 2 {PC2} 2 Figure 1: Processing of the preprohormone POMC POMC is processed into several different melanocortin ligands depending on the tissue. Primary
Recommended publications
  • Universidad Nacional Autónoma De México Plan De Estudios Combinados En Medicina Instituto Nacional De Medicina Genómica
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PLAN DE ESTUDIOS COMBINADOS EN MEDICINA INSTITUTO NACIONAL DE MEDICINA GENÓMICA ESTUDIO POST-MORTEM DE LAS ALTERACIONES EN LA EXPRESIÓN DE RNA EN EL CEREBRO DE PACIENTES SUICIDAS TESIS QUE PARA OPTAR POR EL GRADO DE DOCTORA EN MEDICINA PRESENTA: BRENDA CABRERA MENDOZA DIRECTOR DE TESIS: DR. JOSÉ HUMBERTO NICOLINI SÁNCHEZ INSTITUTO NACIONAL DE MEDICINA GENÓMICA COMITÉ TUTOR: DRA. MARTHA PATRICIA OSTROSKY-SHEJET INSTITUTO DE INVESTIGACIONES BIOMÉDICAS DR. DAVID COLIN GLAHN ESCUELA DE MEDICINA DE HARVARD Ciudad Universitaria, CD. MX., diciembre de 2020 TABLA DE CONTENIDOS Resumen ........................................................................................................................................................................ 1 Abstract .......................................................................................................................................................................... 2 Definición y epidemiología del suicidio ............................................................................................................ 3 Epidemiología global del suicidio ..................................................................................................................... 5 Epidemiología del suicidio en América ........................................................................................................... 8 Epidemiología del suicidio en México ............................................................................................................10
    [Show full text]
  • Cognition and Steroidogenesis in the Rhesus Macaque
    Cognition and Steroidogenesis in the Rhesus Macaque Krystina G Sorwell A DISSERTATION Presented to the Department of Behavioral Neuroscience and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2013 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the PhD dissertation of Krystina Gerette Sorwell has been approved Henryk Urbanski Mentor/Advisor Steven Kohama Member Kathleen Grant Member Cynthia Bethea Member Deb Finn Member 1 For Lily 2 TABLE OF CONTENTS Acknowledgments ......................................................................................................................................................... 4 List of Figures and Tables ............................................................................................................................................. 7 List of Abbreviations ................................................................................................................................................... 10 Abstract........................................................................................................................................................................ 13 Introduction ................................................................................................................................................................. 15 Part A: Central steroidogenesis and cognition ............................................................................................................
    [Show full text]
  • G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes
    Int. J. Mol. Sci. 2014, 15, 1112-1142; doi:10.3390/ijms15011112 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review G Protein-Coupled Receptors: What a Difference a ‘Partner’ Makes Benoît T. Roux 1 and Graeme S. Cottrell 2,* 1 Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK; E-Mail: [email protected] 2 Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-118-378-7027; Fax: +44-118-378-4703. Received: 4 December 2013; in revised form: 20 December 2013 / Accepted: 8 January 2014 / Published: 16 January 2014 Abstract: G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Effects of Chronic Psychosocial Stress on HPA Axis Functionality in Male C57BL/6 Mice and the Impact of Trait Anxiety on the Individual Stress Vulnerability
    Effects of chronic psychosocial stress on HPA axis functionality in male C57BL/6 mice and the impact of trait anxiety on the individual stress vulnerability DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER NATURWISSENSCHAFTEN (DR. RER. NAT.) DER FAKULTÄT FÜR BIOLOGIE UND VORKLINISCHE MEDIZIN DER UNIVERSITÄT REGENSBURG vorgelegt von Andrea Monika Füchsl aus Straubing im Jahr 2013 Das Promotionsgesuch wurde eingereicht am: 04.10.2013 Die Arbeit wurde angeleitet von: Prof. Dr. rer. nat. Inga D. Neumann Unterschrift: DISSERTATION Durchgeführt am Institut für Zoologie der Universität Regensburg TABLE OF CONTENTS I Table of Contents Chapter 1 – Introduction 1 Stress ...................................................................................................... 1 1.1 The Stress System ..................................................................................... 1 1.1.2 Sympathetic nervous system (SNS) ..................................................... 2 1.2.2 Hypothalamic-Pituitary-Adrenal (HPA) axis .......................................... 4 1.2 Acute vs. chronic/repeated stress ............................................................. 13 1.3 Psychosocial stress .................................................................................. 18 2 GC Signalling ....................................................................................... 20 2.1 Corticosteroid availability .......................................................................... 20 2.2 Corticosteroid receptor types in the brain .................................................
    [Show full text]
  • The Melanocortin Receptors and Their Accessory Proteins. Ramachandrappa, S; Gorrigan, RJ; Clark, AJL; Chan, LF
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online The melanocortin receptors and their accessory proteins. Ramachandrappa, S; Gorrigan, RJ; Clark, AJL; Chan, LF © 2013 Ramachandrappa, Gorrigan, Clark and Chan CC-BY For additional information about this publication click this link. http://qmro.qmul.ac.uk/xmlui/handle/123456789/18559 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] REVIEW ARTICLE published: 08 February 2013 doi: 10.3389/fendo.2013.00009 The melanocortin receptors and their accessory proteins Shwetha Ramachandrappa, Rebecca J. Gorrigan, Adrian J. L. Clark and Li F. Chan* Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK Edited by: The five melanocortin receptors (MCRs) named MC1R–MC5R have diverse physiological Jae Young Seong, Korea University, roles encompassing pigmentation, steroidogenesis, energy homeostasis and feeding South Korea behavior as well as exocrine function. Since their identification almost 20 years ago much Reviewed by: has been learnt about these receptors. As well as interacting with their endogenous Akiyoshi Takahashi, Kitasato University, Japan ligands the melanocortin peptides, there is now a growing list of important peptides Robert Dores, University of that can modulate the way these receptors signal, acting as agonists, antagonists, and Minnesota, USA inverse agonists. The discovery of melanocortin 2 receptor accessory proteins as a novel *Correspondence: accessory factor to the MCRs provides further insight into the regulation of these important Li F.Chan, Centre for Endocrinology, G protein-coupled receptor.
    [Show full text]
  • Expression of Μ-Opiate Receptor in Human Epidermis and Keratinocytes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Expression of µ-Opiate Receptor in Human Epidermis and Keratinocytes Paul L. Bigliardi, Mei Bigliardi-Qi, Stanislaus Buechner, and Theo Rufli Department of Dermatology, Kantonsspital Basel, Basel, Switzerland There is increasing evidence that neurotransmitters play which was more distinct in the suprabasal layers. a crucial role in skin physiology and pathology. The Immunohistochemistry using the µ-opiate receptor- expression and production of proopiomelanocortin mole- specific antibody indicates that epidermis expresses pro- cules such as β-endorphin in human epidermis suggest tein as well, and that the protein level is more elevated that an opiate receptor is present in keratinocytes. In this in the basal layer. The correlation between the locations paper we show that human epidermal keratinocytes of both mRNA and protein expression in skin indicates that the -opiate receptor has not only been transcribed express a µ-opiate receptor on both the mRNA level and µ but also has a specific function. To prove a function of the protein level. Performing polymerase chain reaction the receptor we performed a functional assay using skin with cDNA libraries from human epidermal keratinocytes organ cultures from human skin transplants. After 48 h gave the polymerase chain reaction products of the incubation with Naloxone or β-endorphin the expression expected length, which were confirmed as µ-opiate recep- of the µ-opiate receptor in epidermis was significantly tors by Southern blot analysis. Using in situ hybridization downregulated compared with the control. These results techniques with a specific probe for µ-opiate receptors show that a functional receptor indeed exists in human we detected the receptor in human epidermis.
    [Show full text]
  • WO 2015/006437 Al 15 January 2015 (15.01.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/006437 Al 15 January 2015 (15.01.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01K 67/027 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US2014/045934 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, July 2014 (09.07.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 61/844,666 10 July 2013 (10.07.2013) US (84) Designated States (unless otherwise indicated, for every (72) Inventors; and kind of regional protection available): ARIPO (BW, GH, (71) Applicants : MAJZOUB, Joseph A. [US/US]; 1 Charles GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, St. South, Unit 9E, Boston, Massachusetts 021 16 (US).
    [Show full text]
  • Melanocyte-Stimulating Hormones
    The Journal of Neuroscience, August 15, 1996, 16(16):5182–5188 Melanocortin Antagonists Define Two Distinct Pathways of Cardiovascular Control by a- and g-Melanocyte-Stimulating Hormones Si-Jia Li,1 Ka´ roly Varga,1 Phillip Archer,1 Victor J. Hruby,2 Shubh D. Sharma,2 Robert A. Kesterson,3 Roger D. Cone,3 and George Kunos1 1Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0613, 2Department of Chemistry, University of Arizona, Tucson, Arizona 85721, and 3Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97210 Melanocortin peptides and at least two subtypes of melano- intracarotid than after intravenous administration. The effects cortin receptors (MC3-R and MC4-R) are present in brain of g-MSH (1.25 nmol) are not inhibited by the intracarotid regions involved in cardiovascular regulation. In urethane- injection of SHU9119 (1.25–12.5 nmol) or the novel MC3-R anesthetized rats, unilateral microinjection of a-melanocyte- antagonist SHU9005 (1.25–12.5 nmol). We conclude that the stimulating hormone (MSH) into the medullary dorsal–vagal hypotension and bradycardia elicited by the release of complex (DVC) causes dose-dependent (125–250 pmol) hy- a-MSH from arcuate neurons is mediated by neural melano- potension and bradycardia, whereas g-MSH is less effective. cortin receptors (MC4-R/MC3-R) located in the DVC, The effects of a-MSH are inhibited by microinjection to the whereas the similar effects of b-endorphin, a peptide derived same site of the novel MC4-R/MC3-R antagonist SHU9119 from the same precursor, are mediated by opiate receptors (2–100 pmol) but not naloxone (270 pmol), whereas the at the same site.
    [Show full text]
  • Conceptual Development of the Immune System As a Sixth Sense
    BRAIN, BEHAVIOR, and IMMUNITY Brain, Behavior, and Immunity 21 (2007) 23–33 www.elsevier.com/locate/ybrbi Named Series: Twenty Years of Brain, Behavior, and Immunity Conceptual development of the immune system as a sixth sense J. Edwin Blalock a, Eric M. Smith b,* a Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL, USA b Department of Psychiatry and Behavioral Sciences, University of Texas Medical Branch, Galveston, TX, USA Received 8 August 2006; received in revised form 31 August 2006; accepted 3 September 2006 Available online 7 November 2006 Abstract Understanding how and why the immune and nervous systems communicate in a bidirectional pathway has been fundamental to the development of the psychoneuroimmunology (PNI) field. This review will discuss some of the pivotal results that found the nervous and immune systems use a common chemical language for intra and inter-system communication. Specifically the nervous and immune sys- tems produce a common set of peptide and nonpeptide neurotransmitters and cytokines that provides a common repertoire of receptors and ligands between the two systems. These studies led to the concept that through the sharing of ligands and receptors the immune system could serve as a sixth sense to detect things the body cannot otherwise hear, see, smell, taste or touch. Pathogens, tumors, and allergens are detected with great sensitivity and specificity by the immune system. As a sixth sense the immune system is a means to signal and mobilize the body to respond to these types of challenges. The paper will also review in a chronological manner some of the PNI-related studies important to validating the sixth sense concept.
    [Show full text]
  • Gainesville, Florida May 24-28, 2019
    5th Biennial North American Society for Comparative Endocrinology Gainesville, Florida May 24-28, 2019 HELD JOINTLY WITH 5TH BIENNIAL CONFERENCE OF THE NORTH AMERICAN SOCIETY FOR COMPARATIVE ENDOCRINOLOGY (NASCE) AND 10TH INTERNATIONAL SYMPOSIUM ON AMPHIBIAN AND REPTILIAN ENDOCRINOLOGY AND NEUROBIOLOGY (ISAREN) Conference Center Layout 2 5th Biennial North American Society for Comparative Endocrinology Agenda Friday, May 24, 2019 14:00-16:30 NASCE Council Meeting 1- Hawthorne 18:00-18:15 Welcome and Opening Reception- Harn Museum of Art 18:15-21:00 Plenary Saturday, May 25, 2019 Plenary Dr. Sheue-Yann Cheng- Century Ballroom ABC 09:00-10:00 10:00-10:30 Coffee Break Room 1 Room 2 Room 3 10:30-12:30 Thyroid Hormones and Stress Axis Function: From Neuropeptide Signaling Pathways Development Mechanisms to Consequences 1 Session in Arthropods Daniel Buchholz and Aurea Bob Dores, James Carr, Kathleen Angela Lang and Ian Orchard Chair Orozco Gilmore, and Matt Vijayan 12:20-14:00 Lunch Stress Axis Function: From 14:00-16:00 Endocrinology of Domestic and Mechanisms to Consequences 2 Wild Fauna Session Topics in Comparative Endocrinology Bob Dores, James Carr, Kathleen Marta Romano Chair Gilmore, and Matt Vijayan 16:00-16:30 Coffee Break 16:30-17:30 Dr. Michael Romero- Century Ballroom ABC Plenary Poster Session 1- Odd Number 17:30-19:30 Pre-Function Space Sunday, May 26, 2019 Plenary Dr. Ian Orchard- Century Ballroom ABC 09:00-10:00 10:00-10:30 Coffee Break Room 1 Room 2 Room 3 Omics: Analysis of Genomes, 10:30-12:30 Proteomes, Transcriptomes,
    [Show full text]
  • Caractérisation De Nouveaux Gènes Et Polymorphismes Potentiellement Impliqués Dans Les Interactions Hôtes-Pathogènes
    Aix-Marseille Université, Faculté de Médecine de Marseille Ecole Doctorale des Sciences de la Vie et de la Santé THÈSE DE DOCTORAT Présentée par Charbel ABOU-KHATER Date et lieu de naissance: 08-Juilllet-1990, Zahlé, LIBAN En vue de l’obtention du grade de Docteur de l’Université d’Aix-Marseille Mention: Biologie, Spécialité: Microbiologie Caractérisation de nouveaux gènes et polymorphismes potentiellement impliqués dans les interactions hôtes-pathogènes Publiquement soutenue le 5 Juillet 2017 devant le jury composé de : Pr. Daniel OLIVE Directeur de Thèse Pr. Brigitte CROUAU-ROY Rapporteur Dr. Benoît FAVIER Rapporteur Dr. Pierre PONTAROTTI Examinateur Thèse codirigée par Pr. Daniel OLIVE et Dr Laurent ABI-RACHED Laboratoires d’accueil URMITE Research Unit on Emerging Infectious and Tropical Diseases, UMR 6236, Faculty of Medicine, 27, Boulevard Jean Moulin, 13385 Marseille, France CRCM, Centre de Recherche en Cancérologie de Marseille,Inserm 1068, 27 Boulevard Leï Roure, BP 30059, 13273 Marseille Cedex 09, France 2 Acknowledgements First and foremost, praises and thanks to God, Holy Mighty, Holy Immortal, All-Holy Trinity, for His showers of blessings throughout my whole life and to whom I owe my very existence. Glory to the Father, and to the Son, and to the Holy Spirit: now and ever and unto ages of ages. I would like to express my sincere gratitude to my advisors Prof. Daniel Olive and Dr. Laurent Abi-Rached, for the continuous support, for their patience, motivation, and immense knowledge. Someday, I hope to be just like you. A special thanks to my “Godfather” who perfectly fulfilled his role, Dr.
    [Show full text]