Electrically Induced Bacterial Membrane-Potential Dynamics Correspond to Cellular Proliferation Capacity
Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity James P. Stratforda,b,1, Conor L. A. Edwardsa,1, Manjari J. Ghanshyama, Dmitry Malysheva, Marco A. Delisea, Yoshikatsu Hayashic, and Munehiro Asallya,b,d,2 aSchool of Life Sciences, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom; bWarwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, West Midlands, CV4 7AL,United Kingdom; cDepartment of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, Berkshire, RG6 6AH, United Kingdom; and dBio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, West Midlands, CV4 7AL, United Kingdom Edited by E. Peter Greenberg, University of Washington, Seattle, WA, and approved March 29, 2019 (received for review February 2, 2019) Membrane-potential dynamics mediate bacterial electrical signaling An external electrical stimulus alters cellular membrane potential at both intra- and intercellular levels. Membrane potential is also according to the Schwan equation: ΔΨ max = ΔΨ max = 1.5aEð1 + 2 −1 central to cellular proliferation. It is unclear whether the cellular ð2πfτÞ Þ 2,whereΔΨ max is the induced membrane potential, a is response to external electrical stimuli is influenced by the cellular the cell radius, E is the applied field strength, f is the AC field proliferative capacity. A new strategy enabling electrical stimulation frequency, and τ is the relaxation time of the membrane (23). of bacteria with simultaneous monitoring of single-cell membrane- This equation, derived from the electromagnetic theory (24), potential dynamics would allow bridging this knowledge gap and expresses that the maximum change in the membrane potential further extend electrophysiological studies into the field of microbi- ology.
[Show full text]