R Graphics Output

Total Page:16

File Type:pdf, Size:1020Kb

R Graphics Output (+)−Gallocatechin 2 Class Hesperetin Tricin O−sinapic acid Naringenin 7−O−glucoside Anthocyanins Eriodictyol Epicatechin gallate Catechin derivatives Velutin Kumatakenin 1 Flavanone Tricin Myricetin 3−O−galactoside Quercetin Flavone Morin Kaempferol Flavone C−glycosides Quercetin 3−alpha−L−arabinofuranoside Orobol Flavonol Rosinidin O−hexoside 0 Luteolin 2'−Hydroxygenistein Flavonolignan Luteolin 8−C−hexosyl−O−hexoside Afzelechin Isoflavone Quercetin 7−O−malonylhexosyl−hexoside Dihydroquercetin Proanthocyanidins Kaempferol 3−O−robinobioside −1 Peonidin O−malonylhexoside Luteolin C−hexoside Cyanidin O−acetylhexoside Naringenin Naringenin chalcone Butin Pinocembrin Naringenin 7−O−neohesperidoside −2 Chrysin Biochanin A Myricetin Kaempferol 3−O−rutinoside 3,7−Di−O−methylquercetin Chrysoeriol O−rhamnosyl−O−glucuronic acid Procyanidin B2 Isorhamnetin O−acetyl−hexoside Chrysoeriol 5−O−hexoside Epicatechin−epiafzelechin Tricin 5−O−rutinoside Isosakuranetin−7−neohesperidoside Dihydromyricetin 8−C−hexosyl−hesperetin O−hexoside Eriodictiol 6−C−hexoside 8−C−hexoside−O−hexoside C−hexosyl−luteolin O−hexoside Naringenin C−hexoside Kaempferol 7−O−rhamnoside Chrysoeriol Quercetin O−acetylhexoside Eriodictiol C−hexosyl−O−hexoside Procyanidin A2 Hesperetin 5−O−glucoside Kaempferol 3−O−glucoside Quercetin 5−O−malonylhexosyl−hexoside Tricetin Luteolin 7−O−glucoside Eriodictyol C−hexoside 6−Hydroxydaidzein 2'−Hydroxydaidzein Kaempferin Quercetin 3−O−glucoside Fustin Selgin O−malonylhexoside C−pentosyl−C−hexosyl−apigenin Quercetin 4'−O−glucoside Gallocatechin−catechin Luteolin O−hexosyl−O−pentoside Apigenin 7−O−glucoside Apigenin Dihydrokaempferol C−hexosyl−chrysoeriol O−hexoside Catechin Hesperetin O−Glucuronic acid Isovitexin C−hexosyl−apigenin O−caffeoylhexoside Apigenin 7−O−neohesperidoside Apigenin 7−rutinoside Chrysoeriol 7−O−rutinoside Catechin−catechin−catechin Chrysoeriol 7−O−hexoside 6−C−hexosyl−hesperetin O−hexoside C−hexosyl−apigenin O−pentoside Procyanidin B3 4'−Hydroxy−5,7−dimethoxyflavanone Tricin 4'−O−(syringyl alcohol) ether 5−O−hexoside Isohemiphloin C−hexosyl−apigenin O−hexosyl−O−hexoside Butein Di−O−methylquercetin Kaempferol−3−O−robinoside−7−O−rhamnoside L−Epicatechin Glycitin 6−C−hexosyl chrysoeriol O−hexoside Tricin 5−O−hexosyl−O−hexoside 7−O−Methyleriodictyol Kaempferol 3−O−galactoside Luteolin O−eudesmic acid−O−hexoside Luteolin O−feruloylhexoside Calycosin Protocatechuic acid O−glucoside O−methylChrysoeriol 5−O−hexoside O−methylChrysoeriol 7−O−hexoside Hesperetin O−malonylhexoside Sissotrin Chrysoeriol C−hexoside Tricin O−rhamnoside Tricin 5−O−hexoside Glycitein Tricin 7−O−hexoside Tricin di−O−hexoside Delphinidin 3−O−glucoside Nobiletin Tangeretin Baicalein methylQuercetin O−hexoside Isorhamnetin 5−O−hexoside Formononetin 7−O−glucoside Chrysoeriol C−pentosyl−O−hexosyl−O−hexoside Cyanidin O−syringic acid Protocatechuic acid Epigallocatechin Pelargonidin 3−O−beta−D−glucoside Rhamnetin Acacetin Prunetin Tricetin O−malonylhexoside sakuranetin Chrysoeriol 8−C−pentosyl−O−rutinoside 8−C−hexosyl−apigenin O−hexosyl−O−hexoside Selgin 5−O−hexoside Protocatechuic aldehyde Luteolin 6−C−glucoside Tricin O−glucuronic acid Cyanidin 3,5−O−diglucoside Cyanidin Cyanidin 3−O−glucoside Chrysoeriol O−hexosyl−O−hexoside Tricin O−saccharic acid Eriodictyol O−malonylhexoside 8−C−hexosyl−luteolin O−hexoside Tricin O−vanilloylhexoside Tricin O−hexosyl−O−syringin alcohol Naringenin O−malonylhexoside Luteolin O−hexosyl−O−hexosyl−O−hexoside Tricetin O−rutinoside Peonidin O−hexoside Xanthohumol Class WL1 WL2 WL3 RL1 RL2 RL3.
Recommended publications
  • Identification of Compounds That Rescue Otic and Myelination
    RESEARCH ARTICLE Identification of compounds that rescue otic and myelination defects in the zebrafish adgrg6 (gpr126) mutant Elvira Diamantopoulou1†, Sarah Baxendale1†, Antonio de la Vega de Leo´ n2, Anzar Asad1, Celia J Holdsworth1, Leila Abbas1, Valerie J Gillet2, Giselle R Wiggin3, Tanya T Whitfield1* 1Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom; 2Information School, University of Sheffield, Sheffield, United Kingdom; 3Sosei Heptares, Cambridge, United Kingdom Abstract Adgrg6 (Gpr126) is an adhesion class G protein-coupled receptor with a conserved role in myelination of the peripheral nervous system. In the zebrafish, mutation of adgrg6 also results in defects in the inner ear: otic tissue fails to down-regulate versican gene expression and morphogenesis is disrupted. We have designed a whole-animal screen that tests for rescue of both up- and down-regulated gene expression in mutant embryos, together with analysis of weak and strong alleles. From a screen of 3120 structurally diverse compounds, we have identified 68 that reduce versican b expression in the adgrg6 mutant ear, 41 of which also restore myelin basic protein gene expression in Schwann cells of mutant embryos. Nineteen compounds unable to rescue a strong adgrg6 allele provide candidates for molecules that may interact directly with the Adgrg6 receptor. Our pipeline provides a powerful approach for identifying compounds that modulate GPCR activity, with potential impact for future drug design. DOI: https://doi.org/10.7554/eLife.44889.001 *For correspondence: [email protected] †These authors contributed Introduction equally to this work Adgrg6 (Gpr126) is an adhesion (B2) class G protein-coupled receptor (aGPCR) with conserved roles in myelination of the vertebrate peripheral nervous system (PNS) (reviewed in Langenhan et al., Competing interest: See 2016; Patra et al., 2014).
    [Show full text]
  • 6-Hydroxyflavones and Other Flavonoids of Crocus Jeffrey B
    6-Hydroxyflavones and Other Flavonoids of Crocus Jeffrey B. Harborne and Christine A. Williams Phytochemical Unit, Department of Botany, University of Reading. Reading. RG 6 2AS. England Z. Naturforsch. 39c, 18-23 (1984); received N ovem ber 14. 1983 Iridaceae, Crocus, Flavonoids. Kaempferol Glycosides, Chemotaxonomy. 6 -Hydroxyflavones have been identified for the first time in the Iridaceae, in leaves of three Crocus species. Three new glycosides have been characterised: 6 -hydroxyluteolin 7-rhamnosyl- glucoside, scutellarein 7-glucoside and scutellarein 7-methyl ether 6 -glucoside, as well as two known glycosides: 6 -hydroxyluteolin 7-glucoside and 6 -hydroxyluteolin 7-methyl ether 6 - glucoside. 6 -Hydroxyluteolin and scutellarein glycosides have been found before in Bromeliaceae. Commelinaceae, Cyperaceae and Orchidaceae, but this is the first record of the respective 7-methyl ethers in the Monocotyledoneae. Acacetin and tricin have been identified as aglycones in C. laevigatus and C. heuffelianus leaves, respectively and the occurrence of mangiferin confirmed in C. aureus leaves. Two of the major flavonol glycosides present in flowers of cultivated species were identified as kaempferol 3-sophoroside and kaempferol 3- rutinoside-7-glucoside. However none of the flavonoids identified appears to contribute to yellow petal colour in Crocus, which is probably entirely carotenoid-based. Introduction of these compounds and the classification of the genus according to Maw [5], but some evidence As part of a continuing chemotaxonomic survey was obtained of a relationship between chemistry of flavonoids in families of the Monocotyledoneae and geography, especially among the Eastern and [see e.g. 1, 2], our attention has turned to the Western Mediterranean species [6], Iridaceae, which contains some 60 genera and 800 Two of the main reasons why the flavonoids of species.
    [Show full text]
  • GRAS Notice (GRN) No. 719, Orange Pomace
    GRAS Notice (GRN) No. 719 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm SAFETY EVALUATION DOSSIER SUPPORTING A GENERALLY RECOGNIZED AS SAFE (GRAS) CONCLUSION FOR ORANGE POMACE SUBMITTED BY: PepsiCo, Inc. 700 Anderson Hill Road Purchase, NY 10577 SUBMITTED TO: U.S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Food Additive Safety HFS-200 5100 Paint Branch Parkway College Park, MD 20740-3835 CONTACT FOR TECHNICAL OR OTHER INFORMATION: Andrey Nikiforov, Ph.D. Toxicology Regulatory Services, Inc. 154 Hansen Road, Suite 201 Charlottesville, VA 22911 July 3, 2017 Table of Contents Part 1. SIGNED STATEMENTS AND CERTIFICATION ...........................................................1 A. Name and Address of Notifier .............................................................................................1 B. Name of GRAS Substance ...................................................................................................1 C. Intended Use and Consumer Exposure ................................................................................1 D. Basis for GRAS Conclusion ................................................................................................2 E. Availability of Information ..................................................................................................3 Part 2. IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS, AND PHYSICAL OR TECHNICAL EFFECT.................................................................................................4
    [Show full text]
  • Shilin Yang Doctor of Philosophy
    PHYTOCHEMICAL STUDIES OF ARTEMISIA ANNUA L. THESIS Presented by SHILIN YANG For the Degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON DEPARTMENT OF PHARMACOGNOSY THE SCHOOL OF PHARMACY THE UNIVERSITY OF LONDON BRUNSWICK SQUARE, LONDON WC1N 1AX ProQuest Number: U063742 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U063742 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENT I wish to express my sincere gratitude to Professor J.D. Phillipson and Dr. M.J.O’Neill for their supervision throughout the course of studies. I would especially like to thank Dr. M.F.Roberts for her great help. I like to thank Dr. K.C.S.C.Liu and B.C.Homeyer for their great help. My sincere thanks to Mrs.J.B.Hallsworth for her help. I am very grateful to the staff of the MS Spectroscopy Unit and NMR Unit of the School of Pharmacy, and the staff of the NMR Unit, King’s College, University of London, for running the MS and NMR spectra.
    [Show full text]
  • (Piper Nigrum L.) Products Based on LC-MS/MS Analysis
    molecules Article Nontargeted Metabolomics for Phenolic and Polyhydroxy Compounds Profile of Pepper (Piper nigrum L.) Products Based on LC-MS/MS Analysis Fenglin Gu 1,2,3,*, Guiping Wu 1,2,3, Yiming Fang 1,2,3 and Hongying Zhu 1,2,3,* 1 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; [email protected] (G.W.); [email protected] (Y.F.) 2 National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China 3 Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, China * Correspondence: [email protected] (F.G.); [email protected] (H.Z.); Tel.: +86-898-6255-3687 (F.G.); +86-898-6255-6090 (H.Z.); Fax: +86-898-6256-1083 (F.G. & H.Z.) Received: 16 July 2018; Accepted: 7 August 2018; Published: 9 August 2018 Abstract: In the present study, nontargeted metabolomics was used to screen the phenolic and polyhydroxy compounds in pepper products. A total of 186 phenolic and polyhydroxy compounds, including anthocyanins, proanthocyanidins, catechin derivatives, flavanones, flavones, flavonols, isoflavones and 3-O-p-coumaroyl quinic acid O-hexoside, quinic acid (polyhydroxy compounds), etc. For the selected 50 types of phenolic compound, except malvidin 3,5-diglucoside (malvin), 0 L-epicatechin and 4 -hydroxy-5,7-dimethoxyflavanone, other compound contents were present in high contents in freeze-dried pepper berries, and pinocembrin was relatively abundant in two kinds of pepper products. The score plots of principal component analysis indicated that the pepper samples can be classified into four groups on the basis of the type pepper processing.
    [Show full text]
  • Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study
    RESEARCH ARTICLE Revisiting Greek Propolis: Chromatographic Analysis and Antioxidant Activity Study Konstantinos M. Kasiotis1*, Pelagia Anastasiadou1, Antonis Papadopoulos2, Kyriaki Machera1* 1 Benaki Phytopathological Institute, Department of Pesticides Control and Phytopharmacy, Laboratory of Pesticides' Toxicology, Kifissia, Athens, Greece, 2 Benaki Phytopathological Institute, Department of Phytopathology, Laboratory of Non-Parasitic Diseases, Kifissia, Athens, Greece * [email protected] (KMK); [email protected] (KM) Abstract a1111111111 Propolis is a bee product that has been extensively used in alternative medicine and recently a1111111111 a1111111111 has gained interest on a global scale as an essential ingredient of healthy foods and cosmet- a1111111111 ics. Propolis is also considered to improve human health and to prevent diseases such as a1111111111 inflammation, heart disease, diabetes and even cancer. However, the claimed effects are anticipated to be correlated to its chemical composition. Since propolis is a natural product, its composition is consequently expected to be variable depending on the local flora align- ment. In this work, we present the development of a novel HPLC-PDA-ESI/MS targeted OPEN ACCESS method, used to identify and quantify 59 phenolic compounds in Greek propolis hydroalco- holic extracts. Amongst them, nine phenolic compounds are herein reported for the first time Citation: Kasiotis KM, Anastasiadou P, Papadopoulos A, Machera K (2017) Revisiting in Greek propolis. Alongside GC-MS complementary analysis was employed, unveiling Greek Propolis: Chromatographic Analysis and eight additional newly reported compounds. The antioxidant activity study of the propolis Antioxidant Activity Study. PLoS ONE 12(1): samples verified the potential of these extracts to effectively scavenge radicals, with the e0170077. doi:10.1371/journal.pone.0170077 extract of Imathia region exhibiting comparable antioxidant activity to that of quercetin.
    [Show full text]
  • Flavones As Colorectal Cancer Chemopreventive Agents—Phenol-O- Methylation Enhances Efficacy
    Published OnlineFirst July 28, 2009; DOI: 10.1158/1940-6207.CAPR-09-0081 Published Online First on July 28, 2009 as 10.1158/1940-6207.CAPR-09-0081 Cancer Prevention Research Flavones as Colorectal Cancer Chemopreventive Agents—Phenol-O- Methylation Enhances Efficacy Hong Cai,1 Stewart Sale,1 Ralf Schmid,2 Robert G. Britton,1 Karen Brown,1 William P. Steward1 and Andreas J. Gescher1 Abstract Flavonoids occur ubiquitously in plants, and some possess preclinical cancer chemopre- ventive activity. Little is known about molecular features that mediate chemopreventive ef- ficacy of flavonoids. Here, three related flavones, apigenin (4′,5,7-trihydroxyflavone), tricin (4′,5,7-trihydroxy-3′,5′-dimethoxyflavone), and 3′,4′,5′,5,7-pentamethoxyflavone (PMF), were compared in terms of their effects on (a) adenoma development in ApcMin mice, a model of human gastrointestinal malignancies; (b) growth of APC10.1 mouse adenoma cells in vitro; and (c) prostaglandin E-2 generation in HCA-7 human-derived colorectal cancer cells in vitro. Life-long consumption of PMF with the diet at 0.2% reduced ApcMin mouse adenoma number and burden by 43% and 61%, respectively, whereas apigenin was inactive. Tricin has previ- ously shown activity in this model. IC50 values for murine adenoma cell growth inhibition by PMF, tricin, and apigenin were 6, 13, and 18 μmol/L, respectively. In ApcMin mice that received flavones (0.2%) for 4 weeks, adenoma cell proliferation as reflected by Ki-67 staining was re- duced by PMF and tricin, but not by apigenin. On incubation with HCA-7 cells for 6 hours, PMF reduced prostaglandin E-2 generation with an IC50 of 0.8 μmol/L, a fraction of the respective values reported for tricin or apigenin.
    [Show full text]
  • Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin
    Review Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin Rashida Ginwala, Raina Bhavsar, DeGaulle I. Chigbu, Pooja Jain and Zafar K. Khan * Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; [email protected] (R.G.); [email protected] (R.B.); [email protected] (D.I.C.); [email protected] (P.J.) * Correspondence: [email protected] Received: 28 November 2018; Accepted: 30 January 2019; Published: 5 February 2019 Abstract: Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination.
    [Show full text]
  • Methylation of Dietary Flavones Increases Their Metabolic Stability and Chemopreventive Effects
    Int. J. Mol. Sci. 2009, 10, 5002-5019; doi:10.3390/ijms10115002 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Methylation of Dietary Flavones Increases Their Metabolic Stability and Chemopreventive Effects Thomas Walle Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; E-Mail: [email protected]; Tel.: +1-843-795-3492 Received: 30 October 2009 / Accepted: 16 November 2009 / Published: 18 November 2009 Abstract: Dietary flavones have promising chemoprotective properties, in particular with regard to cancer, but problems with low oral bioavailability and sometimes unacceptable toxicity have made their use as protective additives to normal diets questionable. However, methylation of free phenolic hydroxyl groups leads to derivatives not susceptible to glucuronic acid or sulfate conjugation, resulting in increased metabolic stability. Methylation also leads to greatly improved transport through biological membranes, such as in intestinal absorption, and much increased oral bioavailability. Recent studies also indicate that methylation results in derivatives with increasing potency to kill cancer cells. They also show high potency towards inhibition of hormone-regulating enzymes, e.g., aromatase, important in the causation of breast cancer. Methylation of the flavones may also result in derivatives with diminished toxic side-effects and improved aqueous solubility. In conclusion, it appears that methylation of dietary flavones as well as of other food products may produce derivatives with much improved health effects. Keywords: flavonoids; methylation; methoxyflavones; cancer prevention 1. Introduction Dietary flavonoids and other polyphenols have long been considered potential chemoprotective agents, mainly in cardiovascular disease and cancer but also in many other disease conditions [1].
    [Show full text]
  • Apigenin 520-36-5
    SUMMARY OF DATA FOR CHEMICAL SELECTION Apigenin 520-36-5 BASIS OF NOMINATION TO THE CSWG Apigenin is brought to the attention of the CSWG because of a recent scientific article citing this flavonoid as a substance that can be metabolically activated to produce toxic prooxidant phenoxyl radicals. Pure apigenin is used primarily in research as a protein kinase inhibitor that may suppress tumor promotion and that has anti-proliferating effects on human breast cancer cells and inhibitory actions on MAP kinase. Apigenin is also one of several active ingredients in the popular herbal remedy, chamomile. Apigenin is found naturally in many fruits and vegetables, including apples and celery. It is found in several popular spices, including basil, oregano, tarragon, cilantro, and parsley. As a representative of flavonoids containing phenol B rings that may induce lipid peroxidation, apigenin is a candidate for testing. SELECTION STATUS ACTION BY CSWG: 12/12/00 Studies requested: Developmental toxicity Short-term tests for chromosomal aberrations Priority: None assigned Rationale/Remarks: Nomination based on concerns about apigenin’s potential to produce possibly toxic radicals and its estrogenic activity NCI will conduct a mouse lymphoma assay Apigenin 520-36-5 CHEMICAL IDENTIFICATION CAS Registry Number: 520-36-5 Chemical Abstracts Service Name: 4H-1-benzopyran-4-one,5,7-dihydroxy-2-(4- hydroxy-phenyl)- (9CI) Synonyms and Trade Names: Apigenin; apigenine; apigenol; chamomile; C.I. natural yellow 1; 2-(p-hydroxyphenyl)-5,7- dihydroxy-chromone; spigenin; 4',5,7- trihydroxyflavone Structural Class: Flavone Structure, Molecular Formula and Molecular Weight: OH HO O OH O C15H10O5 Mol.
    [Show full text]
  • Phenolic Compounds and Uses in Fruit Growing A,B Melekber SULUSOGLU * Akocaeli University, Arslanbey Agricultural Vocational School, TR-41285, Kocaeli/Turkey
    Turkish Journal of Agricultural and Natural Sciences Special Issue: 1, 2014 TÜRK TURKISH TARIM ve DOĞA JOURNAL of AGRICULTURAL BİLİMLERİ DERGİSİ and NATURAL SCIENCES www.turkjans.com Phenolic Compounds and Uses in Fruit Growing a,b Melekber SULUSOGLU * aKocaeli University, Arslanbey Agricultural Vocational School, TR-41285, Kocaeli/Turkey. bKocaeli University, Graduate School of Natural and Applied Sciences, Department of Horticulture, TR-41380, Kocaeli/Turkey *Corresponding author: [email protected] Abstract Phenolic compounds are a class of chemical compounds in organic chemistry which consist of a hydroxyl group directly bonded to an aromatic hydrocarbon group. Phenolic compounds find in cell wall structures and play a major role in the growth regulation of plant as an internal physiological regulators or chemical messengers. They are used in the fruit growing field. They are related with defending system against pathogens and stress. They increase the success of tissue culture; can be helpful to identification of fruit cultivars, to determination of graft compatibility and identification of vigor of trees. They are also important because of their contribution to the sensory quality of fruits during the technological processes. In this review, the simple classification was given for these compounds and uses in the agricultural field were described. Key words: Phenolic compounds, fruit quality, fruit growing, cultivar identification, grafting, tree vigor Fenolik Bileşikler ve Meyve Yetiştiriciliğinde Kullanımı Özet Aromatik hidrokarbon grubuna bağlı bir hidroksil grubu içeren fenolik bileşikler organik kimyanın bir sınıfıdır. Fenolik bileşikler hücre duvarı yapısında bulunmakta ve içsel bir fizyolojik düzenleyici veya kimyasal haberci olarak bitki büyümesinin organizasyonunda önemli rol oynamaktadır. Meyve yetiştiriciliği alanında kullanılmaktadır.
    [Show full text]
  • 48003 Hughes Et Al 2017 Accepted Version.Pdf
    ResearchOnline@JCU This is the Accepted Version of a paper published in the Journal: Critical Reviews in Food Science and Nutrition Hughes, Samuel D., Ketheesan, Natkunam, and Haleagrahara, Nagaraja (2017) The therapeutic potential of plant flavonoids on rheumatoid arthritis. Critical Reviews in Food Science and Nutrition, 57 (17). pp. 3601-3613. http://dx.doi.org/10.1080/10408398.2016.1246413 © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 The Therapeutic Potential of Plant Flavonoids on Rheumatoid Arthritis Samuel D. Hughes, Natkunam Ketheesan & Nagaraja Haleagrahara To cite this article: Samuel D. Hughes, Natkunam Ketheesan & Nagaraja Haleagrahara (2016): The Therapeutic Potential of Plant Flavonoids on Rheumatoid Arthritis, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2016.1246413 To link to this article: http://dx.doi.org/10.1080/10408398.2016.1246413 Accepted author version posted online: 22 Nov 2016. Submit your article to this journal Article views: 122 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [JAMES COOK UNIVERSITY] Date: 23 March 2017, At: 16:37 ACCEPTED MANUSCRIPT The Therapeutic Potential of Plant Flavonoids on Rheumatoid Arthritis Samuel D. Hughes1, Natkunam Ketheesan2 & Nagaraja Haleagrahara3,* 1,2,3Biomedicine, College of Public Health, Medical & Veterinary Sciences, and 2, 3Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Australia *Address correspondence to: Nagaraja Haleagrahara, Biomedicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia.
    [Show full text]