Norrin, Frizzled-4, and Lrp5 Signaling in Endothelial Cells Controls a Genetic Program for Retinal Vascularization Xin Ye,1,7 Yanshu Wang,1,4,7 Hugh Cahill,2 Minzhong Yu,5 Tudor C. Badea,1,4 Philip M. Smallwood,1,4 Neal S. Peachey,5,6 and Jeremy Nathans1,2,3,4,* 1Department of Molecular Biology and Genetics 2Department of Neuroscience 3Department of Ophthalmology 4Howard Hughes Medical Institute Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 5Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA 6Research Service, Cleveland VA Medical Center, Cleveland, OH 44106, USA 7These authors contributed equally to this work *Correspondence:
[email protected] DOI 10.1016/j.cell.2009.07.047 SUMMARY and structure, multiple cell signaling systems—including the VEGF, Netrin, Ephrin, Notch, and Angiopoietin systems—have Disorders of vascular structure and function play been implicated in coordinating the proliferation, migration, adhe- a central role in a wide variety of CNS diseases. Muta- sion, and differentiation of vascular cells (Adams and Alitalo, 2007). tions in the Frizzled-4 (Fz4) receptor, Lrp5 corecep- The present study focuses on the retinal vasculature. This tor, or Norrin ligand cause retinal hypovasculariza- vasculature plays a central role in a variety of ocular diseases, tion, but the mechanisms by which Norrin/Fz4/Lrp including diabetic retinopathy and retinopathy of prematurity signaling controls vascular development have not (Gariano and Gardner, 2005). The retinal vasculature presents a simple and stereotyped architecture. The major arteries and been defined. Using mouse genetic and cell culture veins reside on the vitreal face of the retina and are oriented radi- models, we show that loss of Fz4 signaling in endo- ally from their origin at the optic disc.