The Enigma in the Heart of Ursa Minor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CONSTELLATION BOÖTES, the HERDSMAN Boötes Is the Cultivator Or Ploughman Who Drives the Bears, Ursa Major and Ursa Minor Around the Pole Star Polaris
CONSTELLATION BOÖTES, THE HERDSMAN Boötes is the cultivator or Ploughman who drives the Bears, Ursa Major and Ursa Minor around the Pole Star Polaris. The bears, tied to the Polar Axis, are pulling a plough behind them, tilling the heavenly fields "in order that the rotations of the heavens should never cease". It is said that Boötes invented the plough to enable mankind to better till the ground and as such, perhaps, immortalizes the transition from a nomadic life to settled agriculture in the ancient world. This pleased Ceres, the Goddess of Agriculture, so much that she asked Jupiter to place Boötes amongst the stars as a token of gratitude. Boötes was first catalogued by the Greek astronomer Ptolemy in the 2nd century and is home to Arcturus, the third individual brightest star in the night sky, after Sirius in Canis Major and Canopus in Carina constellation. It is a constellation of large extent, stretching from Draco to Virgo, nearly 50° in declination, and 30° in right ascension, and contains 85 naked-eye stars according to Argelander. The constellation exhibits better than most constellations the character assigned to it. One can readily picture to one's self the figure of a Herdsman with upraised arm driving the Greater Bear before him. FACTS, LOCATION & MAP • The neighbouring constellations are Canes Venatici, Coma Berenices, Corona Borealis, Draco, Hercules, Serpens Caput, Virgo, and Ursa Major. • Boötes has 10 stars with known planets and does not contain any Messier objects. • The brightest star in the constellation is Arcturus, Alpha Boötis, which is also the third brightest star in the night sky. -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
Searching for Star-Forming Dwarf Galaxies in the Antlia Cluster?
A&A 563, A118 (2014) Astronomy DOI: 10.1051/0004-6361/201322615 & c ESO 2014 Astrophysics Searching for star-forming dwarf galaxies in the Antlia cluster? O. Vaduvescu1,C.Kehrig2, L. P. Bassino3,4,5, A. V. Smith Castelli3,4,5, and J. P. Calderón3,4,5 1 Isaac Newton Group of Telescopes, Apto. 321, 38700 Santa Cruz de la Palma, Canary Islands, Spain e-mail: [email protected] 2 Instituto de Astrofísica de Andalucía (CSIC), Apto. 3004, 18080 Granada, Spain 3 Grupo de Investigación CGGE, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina 4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina 5 Instituto de Astrofísica de La Plata (CCT-La Plata, CONICET-UNLP), Paseo del Bosque, B1900FWA La Plata, Argentina Received 5 September 2013 / Accepted 31 January 2014 ABSTRACT Context. The formation and evolution of dwarf galaxies in clusters need to be understood, and this requires large aperture telescopes. Aims. In this sense, we selected the Antlia cluster to continue our previous work in the Virgo, Fornax, and Hydra clusters and in the Local Volume (LV). Because of the scarce available literature data, we selected a small sample of five blue compact dwarf (BCD) candidates in Antlia for observation. Methods. Using the Gemini South and GMOS camera, we acquired the Hα imaging needed to detect star-forming regions in this sample. With the long-slit spectroscopic data of the brightest seven knots detected in three BCD candidates, we derived their basic chemical properties. -
Elements of Astronomy and Cosmology Outline 1
ELEMENTS OF ASTRONOMY AND COSMOLOGY OUTLINE 1. The Solar System The Four Inner Planets The Asteroid Belt The Giant Planets The Kuiper Belt 2. The Milky Way Galaxy Neighborhood of the Solar System Exoplanets Star Terminology 3. The Early Universe Twentieth Century Progress Recent Progress 4. Observation Telescopes Ground-Based Telescopes Space-Based Telescopes Exploration of Space 1 – The Solar System The Solar System - 4.6 billion years old - Planet formation lasted 100s millions years - Four rocky planets (Mercury Venus, Earth and Mars) - Four gas giants (Jupiter, Saturn, Uranus and Neptune) Figure 2-2: Schematics of the Solar System The Solar System - Asteroid belt (meteorites) - Kuiper belt (comets) Figure 2-3: Circular orbits of the planets in the solar system The Sun - Contains mostly hydrogen and helium plasma - Sustained nuclear fusion - Temperatures ~ 15 million K - Elements up to Fe form - Is some 5 billion years old - Will last another 5 billion years Figure 2-4: Photo of the sun showing highly textured plasma, dark sunspots, bright active regions, coronal mass ejections at the surface and the sun’s atmosphere. The Sun - Dynamo effect - Magnetic storms - 11-year cycle - Solar wind (energetic protons) Figure 2-5: Close up of dark spots on the sun surface Probe Sent to Observe the Sun - Distance Sun-Earth = 1 AU - 1 AU = 150 million km - Light from the Sun takes 8 minutes to reach Earth - The solar wind takes 4 days to reach Earth Figure 5-11: Space probe used to monitor the sun Venus - Brightest planet at night - 0.7 AU from the -
Oriontelescopes.Com Oct
THE EVENING SKY FOR OCTOBER, 2014 NORTH Early October — 10 p.m. Mid October — 9 p.m. URSA MAJOR Late October — 8 p.m. Pointers Big Dipper M51 ζ M81 Winter Hexagon2281 M82 κ M101 LYNX BOÖTES URSA μ M37 AURIGA MINOR M I L K Y W A Y DRACO CAMELOPARDALIS M36 Polaris Little Dipper M38 Capella α CORONA 16,17 BOREALIS ε M1 6543 ν M13 SERPENS CAPUT Double M92 Cluster CEPHEUS Keystone M103 ρ 457 Algol β PERSEUS η M52 Aldebaran μ E M34 δ Vega C 7789 ε Double-Double L γ Hyades I M45 CASSIOPEIA ζ HERCULES P Pleiades M39 Deneb LYRA T TRIANGULUM ORION I M31 α C 7243 M57 752 M110 CYGNUS EAST 7000 M29 χ M32 61 M56 (P a M33 6871 th β o ANDROMEDA Albireo f ARIES OPHIUCHUS WEST S LACERTA Summer Triangle u n TAURUS & VULPECULA I.4665 p γ M27 la n 6633 et s) SAGITTA E 70 Q Great Square DELPHINUS U γ A T γ PISCES of Pegasus O ϑ M14 R PEGASUS M15 Altair Uranus α γ ζ SERPENS EQUULEUS CAUDA Mira ο TX AQUILA M I L KM11 Y W A Y SCUTUM M26 ζ M2 M16 ERIDANUS M17 Neptune M18 AQUARIUS α M24 M25 CETUS M28 M22 7293 FORNAX 253 M30 SAGITTARIUS CAPRICORNUS Teapot Fomalhaut M55 SCULPTOR PISCIS AUSTRINUS 0 55 MICROSCOPIUM 0 20 Star magnitudes N IO R TI Moon IL PHOENIX W Phases GRUS –1 012345 FIRST Oct. 1 SOUTH Double star FULL How To Use This Chart Variable star Oct. -
The Properties of Galaxies in the Virgo and Fornax Clusters: What We've
The Properties of Galaxies in the Virgo and Fornax Clusters: What We’ve Learned Patrick Côté (HIA) HST Observations (11/07) Virgo Fornax solar system star clusters galaxies/AGN other stars ISM/nebulae galaxy clusters 30 March - 3 April, 2009, “Galaxy Evolution and Environment”, Kuala Lumpur, Malaysia Talk Outline • The Virgo and Fornax Clusters in Context • Properties at a Glance stellar nuclei globular AGNs/SBHs & SBHs cluster systems Virgo luminosity red sequence & functions galaxy scaling Fornax relations diffuse light cluster & the ICM structure & UCDS, cEs morphology • A Look Ahead: The Next Generation Virgo Cluster Survey • Summary and Conclusions Virgo and Fornax at a Glance Virgo Fornax Richness Class 1 0 Ω ≈ 100 deg2 ≈ 10 deg2 Distance 16.5 ± 0.1 ± 1.1 Mpc 20.0 ± 0.3 ± 1.4 Mpc σ(vr) ≈ 750 km/s (A), 400 km/s (B) 374 ± 26 km/s R200 1.55 ± 0.06 Mpc (5.4 ± 0.2 deg) ≈ 0.67 Mpc (1.9 deg): Rs 0.56 ± 0.18 Mpc (1.9 ± 0.6 deg) ≈ 50 kpc (0.14 deg): c 2.8 ± 0.7 13.4: 14 13 M200 (4.2 ± 0.5)×10 M⦿ ~ 1.3×10 M⦿ Mgas/Mtot 8-14% (A), ≈ 0.5% (B) ~ 8% Mgal/Mtot 3-4% (A), ≈ 4% (B) ~ 6% ‹kT›x 2.58 ± 0.03 keV 1.20 ± 0.04 keV ‹Fe›x 0.34 ± 0.02 solar 0.23 ± 0.03 solar Virgo and Fornax at a Glance Virgo Fornax Richness Class 1 0 Ω ≈ 100 deg2 ≈ 10 deg2 Distance 16.5 ± 0.1 ± 1.1 Mpc 20.0 ± 0.3 ± 1.4 Mpc σ(vr) ≈ 750 km/s (A), 400 km/s (B) 374 ± 26 km/s R200 1.55 ± 0.06 Mpc (5.4 ± 0.2 deg) ≈ 0.67 Mpc (1.9 deg): Rs 0.56 ± 0.18 Mpc (1.9 ± 0.6 deg) ≈ 50 kpc (0.14 deg): c 2.8 ± 0.7 13.4: 14 13 M200 (4.2 ± 0.5)×10 M⦿ ~ 1.3×10 M⦿ Mgas/Mtot 8-14% (A), ≈ 0.5% (B) ~ 8% Mgal/Mtot 3-4% (A), ≈ 4% (B) ~ 6% ‹kT›x 2.58 ± 0.03 keV 1.20 ± 0.04 keV ‹Fe›x 0.34 ± 0.02 solar 0.23 ± 0.03 solar Cluster Morphology: Virgo • Smith and Shapley (1930s), Reaves (1950s-1980s), de Vaucouleurs et al. -
4391 Abbreviated Instruction
English 4391 Abbreviated instruction • To see details of specifications and operations, refer to the instruction manual: 4391 instruction manual Component identification Setting the constellation dial and the moon dial 1. Find the time difference in local sidereal time from the difference between the longitude of Japan Standard Time and that of your observation place. Constellation dial • +1° of longitude difference results in about +4-minute time difference. Minute hand • You can find the time difference in local sidereal time at your observation place through the difference between the longitude of Japan Standard Time Hour hand (135°E) and your place using the figure below. For example, in places near Tokyo (the longitude of Japan Standard Time +5°), the time difference becomes 20 minutes (= 5 (degree) x 4 (minute)). Crown Difference from the longitude of Japan Standard Time and time difference 125°E 130°E 135°E 140°E 145°E Second hand Crown's position 35°N 0 1 2 • Actual appearance may differ from the illustration. –40 min. –20 min. 0 min. +20 min. +40 min. • The crown has two positions when pulling it out. 2. Pull the crown out to position 1. Constellation dial (displaying the entire sky at 35°N) 3. Rotate the crown to set the constellation dial. • Set the time of the day on the right ascension scale to the corresponding Right ascension scale Ecliptic Celestial equator date on the date scale compensating the time difference found in step 1. Date scale Altitude ‒18° line Ex.: In a place of 140°E on June 11th 21:00 (compensated time: 21:20) Right ascension Constellation dial setting scale Rotation direction of position the constellation and Date scale moon dials (in normal condition) Crown June 11th 21:20 Time setting position Normal position Zenith Meridian Horizon Local sidereal time display position • Finally rotate the constellation dial clockwise to finish the setting. -
SFA Star Chart 1
Nov 20 SFA Star Chart 1 - Northern Region 0h Dec 6 Nov 5 h 23 30º 1 h d Dec 21 h p Oct 21h s b 2 h 22 ANDROMEDA - Daughter of Cepheus and Cassiopeia Mirach Local Meridian for 8 PM q m ANTLIA - Air Pumpe p 40º APUS - Bird of Paradise n o i b g AQUILA - Eagle k ANDROMEDA Jan 5 u TRIANGULUM AQUARIUS - Water Carrier Oct 6 h z 3 21 LACERTA l h ARA - Altar j g ARIES - Ram 50º AURIGA - Charioteer e a BOOTES - Herdsman j r Schedar b CAELUM - Graving Tool x b a Algol Jan 20 b o CAMELOPARDALIS - Giraffe h Caph q 4 Sep 20 CYGNUS k h 20 g a 60º z CAPRICORNUS - Sea Goat Deneb z g PERSEUS d t x CARINA - Keel of the Ship Argo k i n h m a s CASSIOPEIA - Ethiopian Queen on a Throne c h CASSIOPEIA g Mirfak d e i CENTAURUS - Half horse and half man CEPHEUS e CEPHEUS - Ethiopian King Alderamin a d 70º CETUS - Whale h l m Feb 5 5 CHAMAELEON - Chameleon h i g h 19 Sep 5 i CIRCINUS - Compasses b g z d k e CANIS MAJOR - Larger Dog b r z CAMELOPARDALIS 7 h CANIS MINOR - Smaller Dog e 80º g a e a Capella CANCER - Crab LYRA Vega d a k AURIGA COLUMBA - Dove t b COMA BERENICES - Berenice's Hair Aug 21 j Feb 20 CORONA AUSTRALIS - Southern Crown Eltanin c Polaris 18 a d 6 d h CORONA BOREALIS - Northern Crown h q g x b q 30º 30º 80º 80º 40º 70º 50º 60º 60º 70º 50º CRATER - Cup 40º i e CRUX - Cross n z b Rastaban h URSA CORVUS - Crow z r MINOR CANES VENATICI - Hunting Dogs p 80º b CYGNUS - Swan h g q DELPHINUS - Dolphin Kocab Aug 6 e 17 DORADO - Goldfish q h h h DRACO o 7 DRACO - Dragon s GEMINI t t Mar 7 EQUULEUS - Little Horse HERCULES LYNX z i a ERIDANUS - River j -
81 Southern Objects for a 10” Telescope. 0-4Hr 4-8Hr 8-12Hr
81 southern objects for a 10” telescope. 0-4hr NGC55|00h 15m 22s|-39 11’ 35”|33’x 5.6’|Sculptor|Galaxy| NGC104|00h 24m 17s|-72 03’ 30”|31’|Tucana|Globular NGC134|00h 30m 35s|-33 13’ 00”|8.5’x2’|Sculptor|Galaxy| ESO350-40|00h 37m 55s|-33 41’ 20”|1.5’x1.2’|Sculptor|Galaxy|The Cartwheel NGC300|00h 55m 06s|-37 39’ 24”|22’x15.5’|Sculptor|Galaxy| NGC330|00h 56m 27s|-72 26’ 37”|Tucana|1.9’|SMC open cluster| NGC346|00h 59m 14s|-72 09’ 19”|Tucana|5.2’|SMC Neb| ESO351-30|01h 00m 22s|-33 40’ 50”|60’x56’|Sculptor|Galaxy|Sculptor Dwarf NGC362|01h 03m 23s|-70 49’ 42”|13’|Tucana|Globular| NGC2573| 01h 37m 21s|-89 25’ 49”|Octans| 2.0x 0.8|galaxy|polarissima australis| NGC1049|02h 39m 58s|-34 13’ 52”|24”|Fornax|Globular| ESO356-04|02h 40m 09s|-34 25’ 43”|60’x100’|Fornax|Galaxy|Fornax Dwarf NGC1313|03h 18m 18s|-66 29’ 02”|9.1’x6.3’|Reticulum|Galaxy| NGC1316|03h 22m 51s|-37 11’ 22”|12’x8.5’|Fornax|Galaxy| NGC1365|03h 33m 46s|-36 07’ 13”|11.2’x6.2’|Fornax|Galaxy NGC1433|03h 42m 08s|-47 12’ 18”|6.5’x5.9’|Horologium|Galaxy| 4-8hr NGC1566|04h 20m 05s|-54 55’ 42”|Dorado|Galaxy| Reticulum Dwarf|04h 31m 05s|-58 58’ 00”|Reticulum|LMC globular| NGC1808|05h 07m 52s|-37 30’ 20”|6.4’x3.9’|Columba|Galaxy| Kapteyns Star|05h 11m 35s|-45 00’ 16”|Stellar|Pictor|Nearby star| NGC1851|05h 14m 15s|-40 02’ 30”|11’|Columba|Globular| NGC1962group|05h 26m 17s|-68 50’ 28”|?| Dorado|LMC neb/cluster NGC1968group|05h 27m 22s|-67 27’ 36”|12’ for group|Dorado| LMC Neb/cluster| NGC2070|05h 38m 37s|-69 05’ 52”|11’|Dorado|LMC Neb|Tarantula| NGC2442|07h 36m 24s|-69 32’ 38”|5.5’x4.9’|Volans|Galaxy|The meat hook| NGC2439|07h 40m 59s|-31 38’36”|10’|Puppis|Open Cluster| NGC2451|07h 45m 35s|-37 57’ 27”|45’|Puppis|Open Cluster| IC2220|07h 56m 57s|-59 06’ 00”|6’x4’|Carina|Nebula|Toby Jug| NGC2516|07h 58m 29s|-60 51’ 46”|29’|Carina|Open Cluster 8-12hr NGC2547|08h 10m 50s|-49 15’ 39”|20’|Vela|Open Cluster| NGC2736|09h 00m 27s|-45 57’ 49”|30’x7’|Vela|SNR|The Pencil| NGC2808|09h 12m 08s|-64 52’ 48”|12’|Carina|Globular| NGC2818|09h 16m 11s|-36 35’ 59”|9’|Pyxis|Open Cluster with planetary. -
Kinematics of the Dwarf Spheroidal Galaxies Draco and Ursa Minor
University of Groningen Kapteyn Astronomical Institute Kinematics of the dwarf spheroidal galaxies Draco and Ursa Minor MSc Thesis in Astronomy by Johanna Hartke Groningen, August 14, 2015 Supervisors Second Reader Prof. Dr. Eline Tolstoy Prof. Dr. Scott Trager Dr. Shoko Jin Dr. Maarten Breddels Abstract The aim of this thesis is to study the kinematics of the Local Group dwarf spheroidal galaxies Ursa Minor and Draco. These two galaxies are an interesting pair to study, since they are similar in terms of mass, extent, and distance. However, while Draco appears to have a perfect, undisturbed stellar distribution, Ursa Minor shows signs of tidal disturbance. We use new optical spectroscopy of individual red gi- ant branch stars from the AF2-WYFFOS fiber spectrograph on the William Herschel Telescope. We observed several hundred stars in the CaII triplet region. The data have been pipeline-processed at CASU in Cambridge using prototype WEAVE pro- cessing. We combine our dataset of Draco with data published by Walker, Olszewski & Mateo (2015) and apply orbit-based Schwarzschild modeling to the velocity data in order to constrain the dwarf spheroidal's (dark) matter distribution. We are able to determine the dark matter halo mass distribution for a NFW and a cored profile. Page 1 of 58 Contents 1 Introduction 4 1.1 Galaxy Formation . .5 1.2 Local Group dSph galaxies . .6 1.2.1 Draco . .7 1.2.2 Ursa Minor . .8 1.3 Dynamical modeling . .8 1.3.1 Early attempts to model dSphs . .8 1.3.2 Jeans modeling . .9 1.3.3 Schwarzschild modeling . -
CONSTELLATION URSA MINOR, the LITTLE BEAR Ursa Minor
CONSTELLATION URSA MINOR, THE LITTLE BEAR Ursa Minor (Latin: "Smaller She-Bear", to contrast with Ursa Major), also known as the Little Bear, is a constellation in the northern sky. Like the Great Bear, the tail of the Little Bear may also be seen as the handle of a ladle, hence the North American name, Little Dipper. It has seven main stars with four in its bowl, like its partner the Big Dipper. It was one of the 48 constellations listed by the 2nd-century astronomer Ptolemy, and remains one of the 88 modern constellations. Ursa Minor has traditionally been important for navigation, particularly by mariners, because of Polaris (at the end of the tail) being the North Star. Alpha Ursae Minoris, better known as Polaris, is the brightest star in the constellation, is a yellow-white supergiant and the brightest Cepheid variable star in the night sky, ranging from an apparent magnitude of 1.97 to 2.00. Beta Ursae Minoris, also known as Kochab, is an aging star that has swollen and cooled to become an orange giant with an apparent magnitude of 2.08, only slightly fainter than Polaris. Gamma Ursae Minoris, magnitude 3 and Kochab have been called the "guardians of the pole star". Planets have been detected orbiting four of the stars, including Kochab. The constellation also contains an isolated neutron star—Calvera—and H1504+65, the hottest white dwarf yet discovered, with a surface temperature of 200,000 K. HISTORY AND MYTHOLOGY In the Babylonian star catalogues, Ursa Minor was known as the Wagon of Heaven, Damkianna. -
A SURVEY of the SOUTHERN SKY at 30 Mcjs* by D
A SURVEY OF THE SOUTHERN SKY AT 30 Mcjs* By D. S. MATHEWSON,t N. W. BRoTEN,t and D. J. COLEt This paper presents the results of a 30 Mcjs survey of the southern sky using the 210 ft steerable reflector at Parkes, N.S.W. The aerial was fed by a right-handed helix with plane reflector giving a tapered illumination that fell to approximately 10% at the edge of the aperture. The resulting main beam was circular and approxi mately 11 0 between half-power points. The aerial measured left-handed circular polarization relative to the direction of propagation. Fig. 1.-30 Mc/s isophotes in equatorial coordinates (epoch 1964). The brightness temperature contour unit is 1800 degK. The point above which all temperatures are measured is at R.A. 04h 20m, dec. -25°, which is indicated by R.R. in the figure. The positions of the stronger radio sources are marked and identified by their initials: the galactic centre (G.C.), the Vela Puppis region (V.P.), Centaurus A (C), Hydra A (H), Fornax A (F), Pictor A (P), the Large Magellanic Cloud (LMC), and the Small Magellanic Cloud (SMC). * Manuscript received September 7, 1965. t Division of Radiophysics, CSIRO, University Grounds, Chippendale, N.S.W. Aust. J. Phys., 1965, 18, 665-7 666 SHORT COMMUNICATIONS The receiver was a cascade amplifier with a noise temperature of less than 100 0 K and a bandwidth of 2 Mc/s. At this low frequency the main contribution to the total noise of the system was produced by the sky temperature and, with a 2 s time constant, the peak-to-peak noise was about 60 degK.