Aratus: Phaenomena, Translated with an Introduction and Notes by Aaron Poochigian
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enthymema XXIII 2019 the Technê of Aratus' Leptê Acrostich
Enthymema XXIII 2019 The Technê of Aratus’ Leptê Acrostich Jan Kwapisz University of Warsaw Abstract – This paper sets out to re-approach the famous leptê acrostich in Aratus’ Phaenomena (783-87) by confronting it with other early Greek acrostichs and the discourse of technê and sophia, which has been shown to play an important role in a gamut of Greek literary texts, including texts very much relevant for the study of Aratus’ acrostich. In particular, there is a tantalizing connection between the acrostich in Aratus’ poem that poeticized Eudoxus’ astronomical work and the so- called Ars Eudoxi, a (pseudo-)Eudoxian acrostich sphragis from a second-century BC papyrus. Keywords – Aratus; Eudoxus; Ars Eudoxi; Acrostichs; Hellenistic Poetry; Technê; Sophia. Kwapisz, Jan. “The Technê of Aratus’ Leptê Acrostich.” Enthymema, no. XXIII, 2019, pp. 374-89. http://dx.doi.org/10.13130/2037-2426/11934 https://riviste.unimi.it/index.php/enthymema Creative Commons Attribution 4.0 Unported License ISSN 2037-2426 The Technê of Aratus’ Leptê Acrostich* Jan Kwapisz University of Warsaw To the memory of Cristiano Castelletti (1971-2017) Λεπτὴ μὲν καθαρή τε περὶ τρίτον ἦμαρ ἐοῦσα εὔδιός κ’ εἴη, λεπτὴ δὲ καὶ εὖ μάλ’ ἐρευθὴς πνευματίη· παχίων δὲ καὶ ἀμβλείῃσι κεραίαις 785 τέτρατον ἐκ τριτάτοιο φόως ἀμενηνὸν ἔχουσα ἠὲ νότου ἀμβλύνετ’ ἢ ὕδατος ἐγγὺς ἐόντος. (Arat. 783-87) If [the Moon is] slender and clear about the third day, she will bode fair weather; if slender and very red, wind; if the crescent is thickish, with blunted horns, having a feeble fourth-day light after the third day, either it is blurred by a southerly or because rain is in the offing. -
Kretan Cult and Customs, Especially in the Classical and Hellenistic Periods: a Religious, Social, and Political Study
i Kretan cult and customs, especially in the Classical and Hellenistic periods: a religious, social, and political study Thesis submitted for degree of MPhil Carolyn Schofield University College London ii Declaration I, Carolyn Schofield, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been acknowledged in the thesis. iii Abstract Ancient Krete perceived itself, and was perceived from outside, as rather different from the rest of Greece, particularly with respect to religion, social structure, and laws. The purpose of the thesis is to explore the bases for these perceptions and their accuracy. Krete’s self-perception is examined in the light of the account of Diodoros Siculus (Book 5, 64-80, allegedly based on Kretan sources), backed up by inscriptions and archaeology, while outside perceptions are derived mainly from other literary sources, including, inter alia, Homer, Strabo, Plato and Aristotle, Herodotos and Polybios; in both cases making reference also to the fragments and testimonia of ancient historians of Krete. While the main cult-epithets of Zeus on Krete – Diktaios, associated with pre-Greek inhabitants of eastern Krete, Idatas, associated with Dorian settlers, and Kretagenes, the symbol of the Hellenistic koinon - are almost unique to the island, those of Apollo are not, but there is good reason to believe that both Delphinios and Pythios originated on Krete, and evidence too that the Eleusinian Mysteries and Orphic and Dionysiac rites had much in common with early Kretan practice. The early institutionalization of pederasty, and the abduction of boys described by Ephoros, are unique to Krete, but the latter is distinct from rites of initiation to manhood, which continued later on Krete than elsewhere, and were associated with different gods. -
The Magic of the Atwood Sphere
The magic of the Atwood Sphere Exactly a century ago, on June Dr. Jean-Michel Faidit 5, 1913, a “celestial sphere demon- Astronomical Society of France stration” by Professor Wallace W. Montpellier, France Atwood thrilled the populace of [email protected] Chicago. This machine, built to ac- commodate a dozen spectators, took up a concept popular in the eigh- teenth century: that of turning stel- lariums. The impact was consider- able. It sparked the genesis of modern planetariums, leading 10 years lat- er to an invention by Bauersfeld, engineer of the Zeiss Company, the Deutsche Museum in Munich. Since ancient times, mankind has sought to represent the sky and the stars. Two trends emerged. First, stars and constellations were easy, especially drawn on maps or globes. This was the case, for example, in Egypt with the Zodiac of Dendera or in the Greco-Ro- man world with the statue of Atlas support- ing the sky, like that of the Farnese Atlas at the National Archaeological Museum of Na- ples. But things were more complicated when it came to include the sun, moon, planets, and their apparent motions. Ingenious mecha- nisms were developed early as the Antiky- thera mechanism, found at the bottom of the Aegean Sea in 1900 and currently an exhibi- tion until July at the Conservatoire National des Arts et Métiers in Paris. During two millennia, the human mind and ingenuity worked constantly develop- ing and combining these two approaches us- ing a variety of media: astrolabes, quadrants, armillary spheres, astronomical clocks, co- pernican orreries and celestial globes, cul- minating with the famous Coronelli globes offered to Louis XIV. -
Apollonius of Pergaconics. Books One - Seven
APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro]. -
Mecoptera: Meropeidae): Simply Dull Or Just Inscrutable?
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-24-2007 Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable? Louis A. Somma University of Florida, [email protected] James C. Dunford University of Florida, Gainesville, FL Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Somma, Louis A. and Dunford, James C., "Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable?" (2007). Insecta Mundi. 65. https://digitalcommons.unl.edu/insectamundi/65 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0013 Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable? Louis A. Somma Department of Zoology PO Box 118525 University of Florida Gainesville, FL 32611-8525 [email protected] James C. Dunford Department of Entomology and Nematology PO Box 110620, IFAS University of Florida Gainesville, FL 32611-0620 [email protected] Date of Issue: August 24, 2007 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Louis A. Somma and James C. Dunford Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable? Insecta Mundi 0013: 1-5 Published in 2007 by Center for Systematic Entomology, Inc. P. O. Box 147100 Gainesville, FL 32604-7100 U. -
The Almagest
Alma College The Alma, MI 48801 Almagest The bi-weekly newsletter of the Department of Mathematics and Computer Science. Your trusted source for news. Volume 9 No. 4 October 24, 2016 Math & C.S. Colloquium pportionment is a mathematical way to round A integers proportionally. Although well known to determine how many seats each state receives in the U.S. House of Representatives, apportionment methods are also used in the U.S. presidential primaries and the general election. In this talk, Dr. Michael Jones will Why Call it “The Almagest?” examine the geometry of two types of paradoxical behavior ctually, the name of our newsletter was that may occur in these A borrowed from an astronomical handbook settings, using real data when published around 150 A.D. The author was appropriate. We’ll also touch on some recent Claudius Ptolemy, an Egyptian astronomer, mathe- proposed laws and how they would affect the matician, and geographer of Greek descent. paradoxical behavior. Dr. Jones is an Associate Almagest came in thirteen volumes and proclaimed Editor at the American Mathe-matical Society's Mathematical Reviews in Ann Arbor, MI. that the universe was geocentric—the Earth was the middle of the universe. That, however, is not “The Mathematics of Apportionment in what most interests a mathematician about U.S. Presidential Primaries and the Almagest. Of more importance to us is the lost mathematical work that it displays. General Election” Presenter: Dr. Michael Jones Hipparchus was a Greek astronomer and mathema- Date: Tuesday, November 1st tician whose work dates to about three centuries Time: 4:00 prior to Ptolemy’s. -
Preliminary Studies on the Scholia to Euripides
Preliminary Studies on the Scholia to Euripides CALIFORNIA CLASSICAL STUDIES NUMBER 6 Editorial Board Chair: Donald Mastronarde Editorial Board: Alessandro Barchiesi, Todd Hickey, Emily Mackil, Richard Martin, Robert Morstein-Marx, J. Theodore Peña, Kim Shelton California Classical Studies publishes peer-reviewed long-form scholarship with online open access and print-on-demand availability. The primary aim of the series is to disseminate basic research (editing and analysis of primary materials both textual and physical), data-heavy re- search, and highly specialized research of the kind that is either hard to place with the leading publishers in Classics or extremely expensive for libraries and individuals when produced by a leading academic publisher. In addition to promoting archaeological publications, papyrologi- cal and epigraphic studies, technical textual studies, and the like, the series will also produce selected titles of a more general profile. The startup phase of this project (2013–2017) is supported by a grant from the Andrew W. Mellon Foundation. Also in the series: Number 1: Leslie Kurke, The Traffic in Praise: Pindar and the Poetics of Social Economy, 2013 Number 2: Edward Courtney, A Commentary on the Satires of Juvenal, 2013 Number 3: Mark Griffith, Greek Satyr Play: Five Studies, 2015 Number 4: Mirjam Kotwick, Alexander of Aphrodisias and the Text of Aristotle’s Metaphys- ics, 2016 Number 5: Joey Williams, The Archaeology of Roman Surveillance in the Central Alentejo, Portugal, 2017 PRELIMINARY STUDIES ON THE SCHOLIA TO EURIPIDES Donald J. Mastronarde CALIFORNIA CLASSICAL STUDIES Berkeley, California © 2017 by Donald J. Mastronarde. California Classical Studies c/o Department of Classics University of California Berkeley, California 94720–2520 USA http://calclassicalstudies.org email: [email protected] ISBN 9781939926104 Library of Congress Control Number: 2017916025 CONTENTS Preface vii Acknowledgments xi Abbreviations xiii Sigla for Manuscripts of Euripides xvii List of Plates xxix 1. -
Order in the Cosmos
11/12/2015 Order in the Cosmos: how Babylonians and Greeks Shaped our World 1 11/12/2015 2 11/12/2015 Two distinct periods of flowering: • Old Babylonian astronomy: during and after First Babylonian dynasty (Hammurabi) 1830‐1531 BCE • New Babylonian/Chaldean astronomy: Neo‐Babylonian (Nebuchadnezzar) 626‐539 BCE Medo‐Persian 539‐331 BCE Seleucid 335‐141 BCE Parthian 129 BCE‐224 AD timeline Babylonian astronomy Evans 1998 3 11/12/2015 Babylonian Astronomers: ∏ most consistent, systematic and thorough astronomical observers of antiquity ∑ First to recognize periodicity astronomical phenomena (e.g. eclipses !), and apply mathematical techniques for predictions ∑ Systematically observed and recorded the heavens: ‐ Records spanning many centuries (> millennium) ‐ Archives of cuneiform tablets ‐ Famous Examples: Enuma Anu Enlil 68‐70 tablets Kassite period (1650‐1150) tablet 63: Venus tablet of Ammisaduga MUL.APIN 700 BCE oldest copy: 686 BCE • Several types of astronomical texts in Babylonian astronomy. • Four principal types: 1) astronomical diaries 2) goal year texts 3) ephemerides 4) procedure texts • Ephemerides: ‐ listing of positions of planets and their meaning (eg. extreme points retrograde path) ‐ predictive: positions based on calculations (based on scheme) ‐ ephemerides for Moon ‐ ephemerides for planets • Procedure texts: description of procedure(s) to calculate ephemerides 4 11/12/2015 Old text, probably Kassite period (1595‐1157 BCE) • Amajor series of 68 or 70 tablets • dealing with Babylonian astrology. • bulk is a substantial collection of omens, estimated to number between 6500 and 7000, • interpreting a wide variety of celestial and atmospheric phenomena in terms relevant to the king and state 2. If with it a cloudbank lies on the right of the sun: the trade in barley and straw will expand. -
The Adaptation of Babylonian Methods in Greek Numerical Astronomy
FIgure 1. A Babylonian tablet (B.M. 37236) listing undated phases of Mars according to the System A scheme. By permission of the Trustees of the British Museum. This content downloaded from 128.122.149.96 on Thu, 04 Jul 2019 12:50:19 UTC All use subject to https://about.jstor.org/terms The Adaptation of Babylonian Methods in Greek Numerical Astronomy By Alexander Jones* THE DISTINCTION CUSTOMARILY MADE between the two chief astro- nomical traditions of antiquity is that Greek astronomy was geometrical, whereas Babylonian astronomy was arithmetical. That is to say, the Babylonian astronomers of the last five centuries B.C. devised elaborate combinations of arithmetical sequences to predict the apparent motions of the heavenly bodies, while the Greeks persistently tried to explain the same phenomena by hypothe- sizing kinematic models compounded out of circular motions. This description is substantially correct so far as it goes, but it conceals a great difference on the Greek side between the methods of, say, Eudoxus in the fourth century B.C. and those of Ptolemy in the second century of our era. Both tried to account for the observed behavior of the stars, sun, moon, and planets by means of combinations of circular motions. But Eudoxus seems to have studied the properties of his models purely through the resources of geometry. The only numerical parameters associated with his concentric spheres in our ancient sources are crude periods of synodic and longitudinal revolution, that is to say, data imposed on the models rather than deduced from them.1 By contrast, Ptolemy's approach in the Alma- 2 gest is thoroughly numerical. -
The Two Earths of Eratosthenes Author(S): Christián Carlos Carman and James Evans Source: Isis, Vol
University of Puget Sound Sound Ideas All Faculty Scholarship Faculty Scholarship 3-2015 The woT Earths of Eratosthenes James Evans University of Puget Sound, [email protected] Christián Carlos Carman Buenos Aires, Argentina Follow this and additional works at: http://soundideas.pugetsound.edu/faculty_pubs Citation Christián C. Carman and James Evans, “The wT o Earths of Eratosthenes,” Isis 106 (2015), 1-16. This Article is brought to you for free and open access by the Faculty Scholarship at Sound Ideas. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of Sound Ideas. For more information, please contact [email protected]. The Two Earths of Eratosthenes Author(s): Christián Carlos Carman and James Evans Source: Isis, Vol. 106, No. 1 (March 2015), pp. 1-16 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/10.1086/681034 . Accessed: 08/12/2015 15:41 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis. -
A Modern Almagest an Updated Version of Ptolemy’S Model of the Solar System
A Modern Almagest An Updated Version of Ptolemy’s Model of the Solar System Richard Fitzpatrick Professor of Physics The University of Texas at Austin Contents 1 Introduction 5 1.1 Euclid’sElementsandPtolemy’sAlmagest . ......... 5 1.2 Ptolemy’sModeloftheSolarSystem . ..... 5 1.3 Copernicus’sModeloftheSolarSystem . ....... 10 1.4 Kepler’sModeloftheSolarSystem . ..... 11 1.5 PurposeofTreatise .................................. .. 12 2 Spherical Astronomy 15 2.1 CelestialSphere................................... ... 15 2.2 CelestialMotions ................................. .... 15 2.3 CelestialCoordinates .............................. ..... 15 2.4 EclipticCircle .................................... ... 17 2.5 EclipticCoordinates............................... ..... 18 2.6 SignsoftheZodiac ................................. ... 19 2.7 Ecliptic Declinations and Right Ascenesions. ........... 20 2.8 LocalHorizonandMeridian ............................ ... 20 2.9 HorizontalCoordinates.............................. .... 23 2.10 MeridianTransits .................................. ... 24 2.11 Principal Terrestrial Latitude Circles . ......... 25 2.12 EquinoxesandSolstices. ....... 25 2.13 TerrestrialClimes .................................. ... 26 2.14 EclipticAscensions .............................. ...... 27 2.15 AzimuthofEclipticAscensionPoint . .......... 29 2.16 EclipticAltitudeandOrientation. .......... 30 3 Dates 63 3.1 Introduction...................................... .. 63 3.2 Determination of Julian Day Numbers . .... 63 4 Geometric -
Aristarchus of Samos and Graeco-Babylonian Astronomy George Huxley
Arfstarchus of Samos and Graeco-Babylonian Astronomy Huxley, George Greek, Roman and Byzantine Studies; Summer 1964; 5, 2; ProQuest pg. 123 Aristarchus of Samos and Graeco-Babylonian Astronomy George Huxley N THE HALF CENTURY following the death of Alexander the Great the I history of astronomy amongst the Greeks is dominated by Aris tarchus the Samian, who is best known for his theory of the earth's revolution about the sun. His life cannot be dated exactly, but it is clear that he was already of mature age by 280 B.C., for Ptolemy states that "the men around Aristarchus," that is to say his pupils, observed the summer solstice in that year, the 50th of the first Callippic period [Ptolemy, Almagest 3.1]. He was a pupil of Strato the Lampsacene, who succeeded Theophrastus as head of the Lyceum in ca. 288/7 B.C. [Apollodorus 244 F 40] and remained in that post for eighteen years till his death not later than 269 B.C. [Apollodorus 244 F 350]. The date of the publication of Aristarchus's heliocentric theory is not known, but the doctrine was attacked by Cleanthes the Stoic land so must have been well known by 232 B.C., when Cleanthes died; but the helio centric hypothesis may have been formulated much earlier than that. Vitruvius spoke highly of the versatility of Aristarchus in geometry, astronomy, and music [De Architectura 1.1.16], and ascribes to him the invention of two kinds of sundial-the hemispherical uKac/>T} and the disc in the plane [9.8.1].2 He perhaps made use of these improved instruments in his observations of the solstices.