Protein Physics A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Folding-TIM Barrel
Protein Folding Practical September 2011 Folding up the TIM barrel Preliminary Examine the parallel beta barrel that you constructed, noting the stagger of the strands that was needed to connect the ends of the 8-stranded parallel beta sheet into the 8-stranded beta barrel. Notice that the stagger dictates which side of the sheet is on the inside and which is on the outside. This will be key information in folding the complete TIM linear peptide into the TIM barrel. Assembling the full linear peptide 1. Make sure the white beta strands are extended correctly, and the 8 yellow helices (with the green loops at each end) are correctly folded into an alpha helix (right handed with H-bonds to the 4th ahead in the chain). 2. starting with a beta strand connect an alpha helix and green loop to make the blue-red connecting peptide bond. Making sure that you connect the carbonyl (red) end of the beta strand to the amino (blue) end of the loop-helix-loop. Secure the just connected peptide bond bond with a twist-tie as shown. 3. complete step 2 for all beta strand/loop-helix-loop pairs, working in parallel with your partners 4. As pairs are completed attach the carboxy end of the strand- loop-helix-loop to the amino end of the next strand-loop-helix-loop module and secure the new peptide bond with a twist-tie as before. Repeat until the full linear TIM polypeptide chain is assembled. Make sure all strands and helices are still in the correct conformations. -
Supplemental Table 7. Every Significant Association
Supplemental Table 7. Every significant association between an individual covariate and functional group (assigned to the KO level) as determined by CPGLM regression analysis. Variable Unit RelationshipLabel See also CBCL Aggressive Behavior K05914 + CBCL Emotionally Reactive K05914 + CBCL Externalizing Behavior K05914 + K15665 K15658 CBCL Total K05914 + K15660 K16130 KO: E1.13.12.7; photinus-luciferin 4-monooxygenase (ATP-hydrolysing) [EC:1.13.12.7] :: PFAMS: AMP-binding enzyme; CBQ Inhibitory Control K05914 - K12239 K16120 Condensation domain; Methyltransferase domain; Thioesterase domain; AMP-binding enzyme C-terminal domain LEC Family Separation/Social Services K05914 + K16129 K16416 LEC Poverty Related Events K05914 + K16124 LEC Total K05914 + LEC Turmoil K05914 + CBCL Aggressive Behavior K15665 + CBCL Anxious Depressed K15665 + CBCL Emotionally Reactive K15665 + K05914 K15658 CBCL Externalizing Behavior K15665 + K15660 K16130 KO: K15665, ppsB, fenD; fengycin family lipopeptide synthetase B :: PFAMS: Condensation domain; AMP-binding enzyme; CBCL Total K15665 + K12239 K16120 Phosphopantetheine attachment site; AMP-binding enzyme C-terminal domain; Transferase family CBQ Inhibitory Control K15665 - K16129 K16416 LEC Poverty Related Events K15665 + K16124 LEC Total K15665 + LEC Turmoil K15665 + CBCL Aggressive Behavior K11903 + CBCL Anxiety Problems K11903 + CBCL Anxious Depressed K11903 + CBCL Depressive Problems K11903 + LEC Turmoil K11903 + MODS: Type VI secretion system K01220 K01058 CBCL Anxiety Problems K11906 + CBCL Depressive -
Tertiary Structure
Comments Structural motif v sequence motif polyproline (“PXXP”) motif for SH3 binding “RGD” motif for integrin binding “GXXXG” motif within the TM domain of membrane protein Most common type I’ beta turn sequences: X – (N/D/G)G – X Most common type II’ beta turn sequences: X – G(S/T) – X 1 Putting it together Alpha helices and beta sheets are not proteins—only marginally stable by themselves … Extremely small “proteins” can’t do much 2 Tertiary structure • Concerns with how the secondary structure units within a single polypeptide chain associate with each other to give a three- dimensional structure • Secondary structure, super secondary structure, and loops come together to form “domains”, the smallest tertiary structural unit • Structural domains (“domains”) usually contain 100 – 200 amino acids and fold stably. • Domains may be considered to be connected units which are to varying extents independent in terms of their structure, function and folding behavior. Each domain can be described by its fold, i.e. how the secondary structural elements are arranged. • Tertiary structure also includes the way domains fit together 3 Domains are modular •Because they are self-stabilizing, domains can be swapped both in nature and in the laboratory PI3 kinase beta-barrel GFP Branden & Tooze 4 fluorescence localization experiment Chimeras Recombinant proteins are often expressed and purified as fusion proteins (“chimeras”) with – glutathione S-transferase – maltose binding protein – or peptide tags, e.g. hexa-histidine, FLAG epitope helps with solubility, stability, and purification 5 Structural Classification All classifications are done at the domain level In many cases, structural similarity implies a common evolutionary origin – structural similarity without evolutionary relationship is possible – but no structural similarity means no evolutionary relationship Each domain has its corresponding “fold”, i.e. -
BMC Structural Biology Biomed Central
BMC Structural Biology BioMed Central Research article Open Access Natural history of S-adenosylmethionine-binding proteins Piotr Z Kozbial*1 and Arcady R Mushegian1,2 Address: 1Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA and 2Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA Email: Piotr Z Kozbial* - [email protected]; Arcady R Mushegian - [email protected] * Corresponding author Published: 14 October 2005 Received: 21 July 2005 Accepted: 14 October 2005 BMC Structural Biology 2005, 5:19 doi:10.1186/1472-6807-5-19 This article is available from: http://www.biomedcentral.com/1472-6807/5/19 © 2005 Kozbial and Mushegian; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S- adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S- adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S- adenosylmethionine-binding proteins. Results: Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion. -
Molecular Modeling 2021 Lecture 3 -- Tues Feb 2
Molecular Modeling 2021 lecture 3 -- Tues Feb 2 Protein classification SCOP TOPS Contact maps domains Domains To a cell biologist a domain is a sequential unit within a gene, usually with a specific function. To a structural biologist a domain is a compact globular unit within a protein, classified by its 3D structure. 2 A domain is... • ... an autonomously-folding substructure of a protein. • ... > 30 residues, but typically < 200. May be bigger. • ...usually has a single hydrophobic core • ... usually composed of one chain (occasionally composed of multiple chains) • ...is usually composed on one contiguous segment (occasionally made of discontiguous segments of the same chain) 3 SARS-CoV-2 spike protein — a multi domain protein 4 SCOPe -- classification of domains !http://scop.berkeley.edu similar secondary structure (1) class content (2) fold vague structural homology (3) superfamily Clear structural homology (4) family increasing structural similarity structural increasing (5) protein Clear sequence homology (6) species nearly identical sequences individual structures SCOPe -- class 1. all α (289) classes of domains 2. all β (178) 3. α/β (148) 4. α+β (388) 5. multidomain (71) 6. membrane (60) 7. small (98) Not true classes of globular 8. coiled coil (7) protein domains 9. low-resolution (25) 10. peptides (148) 11. designed proteins (44) 12. artifacts (1) Proteins of the same class conserve secondary structure content SCOPe -- fold level within α/β proteins -- Mainly parallel beta sheets (beta-alpha-beta units) TIM-barrel (22) swivelling beta/beta/alpha domain (5) Many folds have historical spoIIaa-like (2) names. “TIM” barrel was flavodoxin-like (10) first seen in TIM. -