A Novel Pseudoknot Element Is Essential for the Action of a Yeast Telomerase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Virus Research Frameshifting RNA Pseudoknots
Virus Research 139 (2009) 193–208 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres Frameshifting RNA pseudoknots: Structure and mechanism David P. Giedroc a,∗, Peter V. Cornish b,∗∗ a Department of Chemistry, Indiana University, 212 S. Hawthorne Drive, Bloomington, IN 47405-7102, USA b Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, IL 61801-3080, USA article info abstract Article history: Programmed ribosomal frameshifting (PRF) is one of the multiple translational recoding processes that Available online 25 July 2008 fundamentally alters triplet decoding of the messenger RNA by the elongating ribosome. The ability of the ribosome to change translational reading frames in the −1 direction (−1 PRF) is employed by many Keywords: positive strand RNA viruses, including economically important plant viruses and many human pathogens, Pseudoknot such as retroviruses, e.g., HIV-1, and coronaviruses, e.g., the causative agent of severe acute respiratory Ribosomal recoding syndrome (SARS), in order to properly express their genomes. −1 PRF is programmed by a bipartite signal Frameshifting embedded in the mRNA and includes a heptanucleotide “slip site” over which the paused ribosome “backs Translational regulation HIV-1 up” by one nucleotide, and a downstream stimulatory element, either an RNA pseudoknot or a very stable Luteovirus RNA stem–loop. These two elements are separated by six to eight nucleotides, a distance that places the NMR solution structure 5 edge of the downstream stimulatory element in direct contact with the mRNA entry channel of the Cryo-electron microscopy 30S ribosomal subunit. The precise mechanism by which the downstream RNA stimulates −1 PRF by the translocating ribosome remains unclear. -
Transmissible Familial Creutzfeldt-Jakob Disease
Proc. Natl. Acad. Sci. USA Vol. 88, pp. 10926-10930, December 1991 Medical Sciences Transmissible familial Creutzfeldt-Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene (amyloid precursor protein/prion protein) LEV G. GOLDFARB*, PAUL BROWN*, W. RICHARD MCCOMBIEt, DMITRY GOLDGABERt, GARY D. SWERGOLD§, PETER R. WILLS¶, LARISA CERVENAKOVAII, HENRY BARON**, C. J. GIBBS, JR.*, AND D. CARLETON GAIDUSEK* *Laboratory of Central Nervous System Studies, and tSection of Receptor Biochemistry and Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892; 4Department of Psychiatry, State University of New York, Stony Brook, NY; §Laboratory of Biochemistry, Division of Cancer Biology and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; IDepartment of Physics, University of Auckland, New Zealand; Institute of Preventive and Clinical Medicine, Bratislava, Czechoslovakia; and **Searle Pharmaceuticals, Paris, France Contributed by D. Carleton Gajdusek, September 6, 1991 ABSTRACT The PRNP gene, encoding the amyloid pre- MATERIALS AND METHODS cursor protein that is involved in centrally Creutzfeldt-Jakob The Tested Population. A total of 535 individuals were disease (CJD), has an unstable region of five variant tandem screened for extra repeats in the PRNP gene: 117 patients octapeptide coding repeats between codons 51 and 91. We with spongiform encephalopathies (including 60 familial cas- screened a total of 535 individuals for the presence of extra es); 159 first-degree relatives ofpatients with familial spongi- repeats in this region, including patients with sporadic and form encephalopathies; 39 patients with other neurological familial forms ofspongiform encephalopathy, members oftheir diseases; 16 patients with non-neurological diseases; and 204 families, other neurological and non-neurological patients, and normal controls. -
Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected]. -
Variation in the Anopheles Gambiae TEP1 Gene Shapes Local Population Structures of Malaria Mosquitoes
Variation in the Anopheles gambiae TEP1 Gene Shapes Local Population Structures of Malaria Mosquitoes D i s s e r t a t i o n Zur Erlangung des akademischen Grades D o c t o r r e r u m n a t u r a l i u m (Dr. rer. nat.) Im Fach Biologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von BSc. (Biochemistry and Molecular Biology), MSc. (Biochemistry) Evans Kiplangat Rono Präsidentin der Humboldt-Universität zu Berlin: Prof. Dr.-Ιng. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät: Prof. Dr. Bernhard Grimm Gutachter/innen: 1. Dr. Elena A. Levashina 2. Prof. Dr. Arturo Zychlinski 3. Prof. Dr. Susanne Hartmann Eingereicht am: Donnerstag, 04.05.2017 Tag der mündlichen Prüfung: Donnerstag, 29.06.2017 ii Zusammenfassung Abstract Zusammenfassung Rund eine halbe Million Menschen sterben jährlich im subsaharischen Afrika an Malaria Infektionen, die von der Anopheles gambiae Mücke übertragen werden. Die Allele (*R1, *R2, *S1 und *S2) des A. gambiae complement-like thioester-containing Protein 1 (TEP1) bestimmen die Fitness der Mücken, welches die männlichen Fertilität und den Resistenzgrad der Mücke gegen Pathogene wie Bakterien und Malaria- Parasiten. Dieser Kompromiss zwischen Reproduktion und Immunnität hat Auswirkungen auf die Größe der Mückenpopulationen und die Rate der Malariaübertragung, wodurch der TEP1 Lokus ein Primärziel für neue Malariakontrollstrategien darstellt. Wie die genetische Diversität von TEP1 die genetische Struktur natürlicher Vektorpopulationen beeinflusst, ist noch unklar. Die Zielsetzung dieser Doktorarbeit waren: i) die biogeographische Kartographierung der TEP1 Allele und Genotypen in lokalen Malariavektorpopulationen in Mali, Burkina Faso, Kamerun, und Kenia, und ii) die Bemessung des Einflusses von TEP1 Polymorphismen auf die Entwicklung humaner P. -
Thermodynamic Characterization of the Saccharomyces Cerevisiae Telomerase RNA Pseudoknot Domain in Vitro
Downloaded from rnajournal.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Thermodynamic characterization of the Saccharomyces cerevisiae telomerase RNA pseudoknot domain in vitro FEI LIU, YOORA KIM, CHARMION CRUICKSHANK, and CARLA A. THEIMER1 Department of Chemistry, State University of New York at Albany, Albany, New York 12222, USA ABSTRACT Recent structural and functional characterization of the pseudoknot in the Saccharomyces cerevisiae telomerase RNA (TLC1) has demonstrated that tertiary structure is present, similar to that previously described for the human and Kluyveromyces lactis telomerase RNAs. In order to biophysically characterize the identified pseudoknot secondary and tertiary structures, UV- monitored thermal denaturation experiments, nuclear magnetic resonance spectroscopy, and native gel electrophoresis were used to investigate various potential conformations in the pseudoknot domain in vitro, in the absence of the telomerase protein. Here, we demonstrate that alternative secondary structures are not mutually exclusive in the S. cerevisiae telomerase RNA, tertiary structure contributes 1.5 kcal molÀ1 to the stability of the pseudoknot (~half the stability observed for the human telomerase pseudoknot), and identify additional base pairs in the 39 pseudoknot stem near the helical junction. In addition, sequence conservation in an adjacent overlapping hairpin appears to prevent dimerization and alternative conformations in the context of the entire pseudoknot-containing region. Thus, this work provides a detailed in vitro characterization of the thermodynamic features of the S. cerevisiae TLC1 pseudoknot region for comparison with other telomerase RNA pseudoknots. Keywords: telomerase; pseudoknot; RNA thermodynamics; conformational equilibrium; TLC1 INTRODUCTION the telomerase RNA also provides a scaffold for accessory protein subunits and contributes to catalysis and repeat Telomerase is the ribonucleoprotein (RNP) complex re- addition processivity (Tzfati et al. -
Mouse Tep1 Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Tep1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tep1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tep1 gene (NCBI Reference Sequence: NM_009351 ; Ensembl: ENSMUSG00000006281 ) is located on Mouse chromosome 14. 55 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 55 (Transcript: ENSMUST00000006444). Exon 10 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tep1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-321A24 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a disruption in this gene show no obvious phenotype. No changes are seen in telomerase activity or telomere length. Exon 10 starts from about 19.88% of the coding region. The knockout of Exon 10 will result in frameshift of the gene. The size of intron 9 for 5'-loxP site insertion: 4878 bp, and the size of intron 10 for 3'-loxP site insertion: 990 bp. The size of effective cKO region: ~610 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 10 11 12 13 55 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Tep1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
Predicting 3D Structure and Stability of RNA Pseudoknots in Monovalent and Divalent Ion Solutions
RESEARCH ARTICLE Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions ☯ ☯ Ya-Zhou Shi1,2 , Lei Jin2 , Chen-Jie Feng2, Ya-Lan Tan2, Zhi-Jie Tan2* 1 Research Center of Nonlinear Science, School of Mathematics and Computer Science, Wuhan Textile University, Wuhan, China, 2 Department of Physics and Key Laboratory of Artificial Micro- and Nano- structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, China a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract RNA pseudoknots are a kind of minimal RNA tertiary structural motifs, and their three- dimensional (3D) structures and stability play essential roles in a variety of biological func- OPEN ACCESS tions. Therefore, to predict 3D structures and stability of RNA pseudoknots is essential for Citation: Shi Y-Z, Jin L, Feng C-J, Tan Y-L, Tan Z-J understanding their functions. In the work, we employed our previously developed coarse- (2018) Predicting 3D structure and stability of RNA grained model with implicit salt to make extensive predictions and comprehensive analyses pseudoknots in monovalent and divalent ion on the 3D structures and stability for RNA pseudoknots in monovalent/divalent ion solutions. solutions. PLoS Comput Biol 14(6): e1006222. The comparisons with available experimental data show that our model can successfully https://doi.org/10.1371/journal.pcbi.1006222 predict the 3D structures of RNA pseudoknots from their sequences, and can also make reli- Editor: Teresa M. Przytycka, National Center for able predictions for the stability of RNA pseudoknots with different lengths and sequences Biotechnology Information (NCBI), UNITED STATES over a wide range of monovalent/divalent ion concentrations. -
Telomere Shortening and Apoptosis in Telomerase-Inhibited Human Tumor Cells
Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Telomere shortening and apoptosis in telomerase-inhibited human tumor cells Xiaoling Zhang,1 Vernon Mar,1 Wen Zhou,1 Lea Harrington,2 and Murray O. Robinson1,3 1Department of Cancer Biology, Amgen, Thousand Oaks, California 91320 USA; 2Amgen Institute/Ontario Cancer Institute, Toronto, Ontario M5G2C1 Canada Despite a strong correlation between telomerase activity and malignancy, the outcome of telomerase inhibition in human tumor cells has not been examined. Here, we have addressed the role of telomerase activity in the proliferation of human tumor and immortal cells by inhibiting TERT function. Inducible dominant-negative mutants of hTERT dramatically reduced the level of endogenous telomerase activity in tumor cell lines. Clones with short telomeres continued to divide, then exhibited an increase in abnormal mitoses followed by massive apoptosis leading to the loss of the entire population. This cell death was telomere-length dependent, as cells with long telomeres were viable but exhibited telomere shortening at a rate similar to that of mortal cells. It appears that telomerase inhibition in cells with short telomeres lead to chromosomal damage, which in turn trigger apoptotic cell death. These results provide the first direct evidence that telomerase is required for the maintenance of human tumor and immortal cell viability, and suggest that tumors with short telomeres may be effectively and rapidly killed following telomerase inhibition. [Key Words: TERT; telomere; dominant negative; proliferation; cancer] Received June 4, 1999; revised version accepted August 3, 1999. The termini of most eukaryotic chromosomes are com- TEP1 binds the telomerase RNA and associates with posed of terminal repeats called telomeres. -
Tetrahymena Proteins P80 and P95 Are Not Core Telomerase Components
Tetrahymena proteins p80 and p95 are not core telomerase components Douglas X. Mason*†, Chantal Autexier†‡, and Carol W. Greider*†§ *Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and †Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 Communicated by Thomas J. Kelly, The Johns Hopkins University, Baltimore, MD, August 29, 2001 (received for review July 3, 2001) Telomeres provide stability to eukaryotic chromosomes and consist activity is still present in cells that lack these genes (34). EST1 of tandem DNA repeat sequences. Telomeric repeats are synthe- and EST3 physically interact with telomerase and telomerase sized and maintained by a specialized reverse transcriptase, termed RNA, indicating they are telomerase-associated proteins (33). In telomerase. Tetrahymena thermophila telomerase contains two human cells, telomerase-associated protein 1 (TEP1) and the essential components: Tetrahymena telomerase reverse transcrip- chaperone proteins hsp90 and p23 were found to interact with tase (tTERT), the catalytic protein component, and telomerase RNA the hTERT protein and telomerase activity (35, 36). The pro- that provides the template for telomere repeat synthesis. In addi- teins L22, hStau, and dyskerin bind human telomerase RNA and tion to these two components, two proteins, p80 and p95, were are associated with telomerase activity in cell extracts (37, 38). previously found to copurify with telomerase activity and to In the ciliate E. audiculatus, the protein p43 was identified by interact with tTERT and telomerase RNA. To investigate the role of copurification with TERT and telomerase activity (39). p43 is p80 and p95 in the telomerase enzyme, we tested the interaction physically associated with telomerase activity in cell extracts and of p80, p95, and tTERT in several different recombinant expression is a homologue of the human La protein (40). -
Investigation of a 16S Rna Central Domain Pseudoknot Jenna Marie Jasinski-Bolak Wayne State University
Wayne State University Wayne State University Theses 1-1-2012 Investigation Of A 16s Rna Central Domain Pseudoknot Jenna Marie Jasinski-Bolak Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Recommended Citation Jasinski-Bolak, Jenna Marie, "Investigation Of A 16s Rna Central Domain Pseudoknot" (2012). Wayne State University Theses. Paper 210. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. INVESTIGATION OF A 16S RNA CENTRAL DOMAIN PSEUDOKNOT by JENNA JASINSKI-BOLAK THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 2012 MAJOR: BIOLOGICAL SCIENCES Approved by: __________________________________________ Advisor Date ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Phil Cunningham for his patience with me throughout my time in the lab, both during undergrad and grad school. I’d like to think of my mischief and curiosity as assets, but in all reality, I owe him a big thanks for not kicking me out every time I did something stupid, which was a lot of times. I hope I become a big name that he can tell his future students, “we still stay in contact”. A special thanks to Dr. Wes Colangelo, who hoodwinked Phil into letting me join the lab as an undergrad. He is really one of the smartest people I’ll ever know, and always willing to help…after I badger him long enough. -
Molecular Knots in Biology and Chemistry
Molecular Knots in Biology and Chemistry Nicole C. H. Lim1,2 and Sophie E. Jackson1 1Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom 2Faculty of Sciences, Universiti Brunei Darussalam, Gadong BE 1410, Brunei Darussalam E-mails: [email protected] and [email protected] Abstract Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. 2 1. Introduction Knots and entanglements are common topological features observed not only in the macroscopic world, but also at the molecular level (Figure 1). In everyday life, they can be found in various useful applications, from applying surgical sutures to tying shoelaces. However, in some cases, knots can be a nuisance, for example, they can form spontaneously in electrical cables, headphones and garden pipes. They can also lead to undesirable outcomes such as the obstruction of blood circulation to the fetus when tight knots form in the umbilical cord during human pregnancy [1]. Recently, the importance and prevalence of knots at a molecular level have become truly apparent and this has attracted increasing interest from scientists in different fields. -
Fluorescence Competition Assay Measurements of Free Energy Changes for RNA Pseudoknots† Biao Liu,‡ Neelaabh Shankar,§ and Douglas H
Biochemistry 2010, 49, 623–634 623 DOI: 10.1021/bi901541j Fluorescence Competition Assay Measurements of Free Energy Changes for RNA Pseudoknots† Biao Liu,‡ Neelaabh Shankar,§ and Douglas H. Turner*,‡ ‡Department of Chemistry, University of Rochester, Rochester, New York 14627, §Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642 Received September 3, 2009; Revised Manuscript Received November 17, 2009 ABSTRACT: RNA pseudoknots have important functions, and thermodynamic stability is a key to predicting pseudoknots in RNA sequences and to understanding their functions. Traditional methods, such as UV melting and differential scanning calorimetry, for measuring RNA thermodynamics are restricted to temperature ranges around the melting temperature for a pseudoknot. Here, we report RNA pseudoknot free energy changes at 37 °C measured by fluorescence competition assays. Sequence-dependent studies for the loop 1-stem 2 region reveal (1) the individual nearest-neighbor hydrogen bonding (INN-HB) model provides a reasonable estimate for the free energy change when a Watson-Crick base pair in stem 2 is changed, (2) the loop entropy can be estimated by a statistical polymer model, although some penalty for certain loop sequences is necessary, and (3) tertiary interactions can significantly stabilize pseudoknots and extending the length of stem 2 may alter tertiary interactions such that the INN-HB model does not predict the net effect of adding a base pair. The results can inform writing of algorithms for predicting and/or designing RNA secondary structures. RNA pseudoknots are important motifs that are formed by structure including pseudoknots are available. Most such com- base pairing between the nucleotides in a loop region and putational approaches use a nearest-neighbor model (39, 40)for complementary bases outside the loop (Figure 1A).