AMERICAN MUSEUM Novitates

Total Page:16

File Type:pdf, Size:1020Kb

AMERICAN MUSEUM Novitates AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2795, pp. 1-1 8, figs. 1-7 October 9, 1984 On the Relationships of the Triassic-Liassic Redfieldiiform Fishes BOBB SCHAEFFER' ABSTRACT A survey of character distributions among the sumably independent reduction of the branchios- extinct lower actinopterygians has corroborated tegal series. the hypothesis that the freshwater, Triassic-Liassic The sister group of the redfieldiiforms among redfieldiiform fishes form a monophyletic group. the other extinct lower actinopterygians remains This proposal is based mainly on the pattern of unknown, but a survey ofthe dermal skull in these the dermal snout, loss of anterior nares, and pre- fishes has provided a hypothetical "sister" pattern. INTRODUCTION Character analysis in the palaeonisciforms The primary purpose of the present paper and other extinct lower actinopterygian is to attempt a cladistic analysis ofone group groups has lagged well behind that for the ofextinct lower actinopterygians that has long extinct neopterygians. The reasons for this been regarded as a "natural" one, namely, include the absence of close living relatives, the Redfieldiiformes. They are Triassic and the apparent paucity of useful characters in early Jurassic freshwater fishes (fig. 1) whose taxa that are frequently represented by com- remains have been found in continental sed- pressed and inadequately preserved dermal iments in Australia, South Africa, Zambia, skeletons, the fragmentary fossil record, and Morocco, eastern and western United States, the not inconsiderable problems of morpho- and questionably in Madagascar. The design logical interpretation. More or less three di- of the redfieldiiform skeleton has suggested mensional specimens that can be prepared affinity with several other extinct lower ac- chemically or by air abrasion may yield a tinopterygian groups, but there has been no great deal of information, but they represent consensus about relationship. only a small fraction ofthe nearly 200 genera In regard to the living lower actinopteryg- in this paraphyletic assemblage. ians, Patterson (1982) has recently defined I Curator Emeritus, Department of Vertebrate Paleontology, American Museum of Natural History. Copyright © American Museum of Natural History 1984 ISSN 0003-0082 / Price $2.00 2 AMERICAN MUSEUM NOVITATES NO. 2795 FIG. 1. Restorations of three redfieldiiforms. A. Brookvalia. After Hutchinson, 1973 and AMNH 4706, 9254. Flank squamation omitted. B. Daedalichthys. After Brough, 1931 and BMNH 17532-3. C. Cyonichthys. From Schaeffer, 1967. 1 984 SCHAEFFER: REDFIELDIIFORM FISHES 3 two monophyletic groups, the Cladistia for fig. 54), and that the two groups arose from the polypteroids, and the Chondrostei for the a palaeonisciform complex including the acipenseroids and polyodontoids plus their Elonichthyidae, Acrolepidae, and the Rhad- fossil relatives. This restricted use ofthe term inichthyidae (ibid., p. 346). In recent pre- Chondrostei makes it still more imperative cladistic classifications ofthe extinct and liv- that the various taxa ofextinct lower actinop- ing actinopterygians (e.g., Andrews et al., terygians be restudied. The suspected pa- 1967; Romer, 1967) the Redfieldiiformes are raphyly ofnumerous fossil non-neopterygian listed as a suborder or order of the Chon- categories is emphasized by Patterson's (1982, drostei without comment on relationship. fig. 3B) decision to include the palaeonisci- Hutchinson's (1978) last paper on the red- form genus Pteronisculus in a trichotomy with fieldiiforms, which is mainly concerned with the Chondrostei and the Neopterygii on the the genus Helichthys, includes alternative basis of five shared characters. In addition, cladograms for the relationships ofthis genus Gardiner (in press) has concluded that the to the three redfieldiiform families that he Devonian palaeonisciform genera Mimia and defined in 1973 (the Brookvaliidae, Schizur- Moythomasia are successive sister taxa to the ichthyidae, and Redfieldiidae). Prior to his remaining actinopterygians. As such, they death in 1978, Peter Hutchinson and I had should provide us with information on the planned to write a joint paper on redfieldi- primitive state for the actinopterygian brain- iform affinities and interrelationships. case (Mimia is represented by abundant three- The present paper is dedicated to his mem- dimensional material), palate, dermal skull, ory. axial skeleton, fins, and squamation. This in- formation, much of it recently acquired, is ABBREVIATIONS of importance in obviously considerable AMNH, The American Museum of Natural His- working out the patterns of character distri- tory bution within the palaeonisciforms and the BMNH, British Museum (Natural History) redfieldiiforms, and in relation to seeking a UTVPC, University of Texas Vertebrate Paleon- sister group for the latter. tology Collection Discussion of redfieldiiform relationships (see summary in Schaeffer, 1967, p. 329) ef- Anatomical abbreviations are included in the fectively began with Stensio's (1921) opinion legend for figure 4. that the catopterids (=redfieldiids) and the SYSTEMATIC RESUME colobodontids (=perleidids) should be grouped in the family Catopteridae, which, In order to facilitate later discussion, a di- he believed, is closely related to the palaeo- agnosis ofthe Redfieldiiformes is included in niscids. Lehman (1966) placed both fami- this section along with a list of genera ar- lies in the order Perleidiformes, which he ranged, as far as practicable, by character dis- considered to be one of numerous orders of tribution (fig. 6), relative age and source area. fossil, non-teleost actinopterygians (ibid., p. The vertical distribution of the Newark su- 71). Brough (1931, 1934) first considered the pergroup genera is summarized in Olsen, Catopteridae to be "closely related to, and McCune and Thomson (1982, fig. 7). derived from, the Palaeoniscidae," and, in DIAGNOSIS: Lower actinopterygians (non- 1936, to be derived from another palaeon- neopterygians) with a terminal or subtermi- isciform family, the Dicellopygidae. Schaef- nal gape, fusiform body outline and an equi- fer (1967, 1973) has favored derivation from lobate, hemiheterocercal tail. The braincase generalized palaeoniscids, while Lowney (Ms) is typically palaeonisciform with an open oti- has tentatively proposed a sister-group rela- co-occipital fissure and a nearly vertical hyo- tionship with the rhadinichthyid palaeonis- mandibular facet. The parasphenoid is short, ciforms. Hutchinson (1973, p. 345), suggest- with well-developed ascending processes. The ed that the redfieldiiforms and the vomerine area is covered by elongated paired perleidiforms had a common ancestor (ibid., tooth plates (in Ichnolepis). The endoptery- 4 AMERICAN MUSEUM NOVITATES NO. 2795 goids are relatively large and dentigerous. The 8. Molybdichthys Wade, 1935. Middle Triassic dermal snout is composed ofa median rostral (?Ladinian). Same locality as Schizurichthys. and postrostral, paired nasals and paired 9. Daedalichthys Brough, 1931. Lower Triassic "premaxillae" (=premaxillo-antorbitals of (Scythian). Same locality as Atopocephala. some authors). The single nostril is surround- 10. Cionichthys Schaeffer, 1967. Upper Triassic (Middle-Late Carnian) Chinle Group and ed by the nasal, adnasal and the enlarged Dockum Formation, western USA; Newark "premaxilla." The nasal is excluded from the Supergroup, eastern USA. orbit by the adnasal. The maxilla is fixed and 11. Redfieldius Hay, 1899. Lower Jurassic (Het- expanded posteriorly. The preopercular is tangian-Sinemurian), Newark Supergroup, angled; the subopercular is larger than, or eastern USA. about equal to, the size ofthe opercular. Both 12. Dictyopyge Lyell, 1847. Upper Triassic (Mid- a dermohyal and an antopercular are present dle Carnian), Newark Supergroup, eastern in the more generalized taxa. There is a sin- USA. gle, platelike branchiostegal (two in Daedal- 13. Mauritanichthys Martin, 1982. Upper Trias- sic, Argana Valley, Western Atlas, Morocco. ichthys) and a single median gular. The der- 14. Lasalichthys Schaeffer, 1967. Upper Triassic mopterotic is large and rectangular. The (?Carnian), Chinle Group and Dockum For- shoulder girdle includes a clavicle, postclei- mation, western USA. thrum, and a presupracleithrum (observed in 15. Synorichthys Schaeffer, 1967; Schaeffer and Helichthys). Fringing fulcra are probably Mangus, 1970. Upper Triassic (?Carnian), present on all fins. Basal fulcra border the Chinle Group and Dockum Formation, west- unpaired fins, including both lobes ofthe cau- ern USA; Newark Supergroup, eastern USA. dal. The rays of the remote, opposite dorsal Genera 1 through 5 were included by and anal fins are more numerous than the Hutchinson (1973) in his Brookvaliidae and basals. The scales are rhomboidal, with peg- 12, 14 and 15 in the Redfieldiidae. Schizur- and-socket articulation, and with dentine and ichthys was the only genus assigned to the ganoin layers. Family Schizurichthyidae. Hutchinson's (1973, 1978) division of the redfieldiiforms into the Brookvaliidae, Schi- CHARACTER ANALYSIS zurichthyidae and the Redfieldiidae left the The characters discussed below are ar- genus Helichthys (ibid., 1978) in an indeter- ranged as follows: neurocranium, snout, cir- minate status. The potential monophyly of cumorbital series, skull roof, cheek area, these families and the affinities of Helichthys opercular series, palate, mandible, paired
Recommended publications
  • A Late Permian Ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region
    bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A late Permian ichthyofauna from the Zechstein Basin, Lithuania-Latvia Region 2 3 Darja Dankina-Beyer1*, Andrej Spiridonov1,4, Ģirts Stinkulis2, Esther Manzanares3, 4 Sigitas Radzevičius1 5 6 1 Department of Geology and Mineralogy, Vilnius University, Vilnius, Lithuania 7 2 Chairman of Bedrock Geology, Faculty of Geography and Earth Sciences, University 8 of Latvia, Riga, Latvia 9 3 Department of Botany and Geology, University of Valencia, Valencia, Spain 10 4 Laboratory of Bedrock Geology, Nature Research Centre, Vilnius, Lithuania 11 12 *[email protected] (DD-B) 13 14 Abstract 15 The late Permian is a transformative time, which ended in one of the most 16 significant extinction events in Earth’s history. Fish assemblages are a major 17 component of marine foods webs. The macroevolution and biogeographic patterns of 18 late Permian fish are currently insufficiently known. In this contribution, the late Permian 19 fish fauna from Kūmas quarry (southern Latvia) is described for the first time. As a 20 result, the studied late Permian Latvian assemblage consisted of isolated 21 chondrichthyan teeth of Helodus sp., ?Acrodus sp., ?Omanoselache sp. and 22 euselachian type dermal denticles as well as many osteichthyan scales of the 23 Haplolepidae and Elonichthydae; numerous teeth of Palaeoniscus, rare teeth findings of 1 bioRxiv preprint doi: https://doi.org/10.1101/554998; this version posted February 20, 2019.
    [Show full text]
  • The Early Triassic Jurong Fish Fauna, South China Age, Anatomy, Taphonomy, and Global Correlation
    Global and Planetary Change 180 (2019) 33–50 Contents lists available at ScienceDirect Global and Planetary Change journal homepage: www.elsevier.com/locate/gloplacha Research article The Early Triassic Jurong fish fauna, South China: Age, anatomy, T taphonomy, and global correlation ⁎ Xincheng Qiua, Yaling Xua, Zhong-Qiang Chena, , Michael J. Bentonb, Wen Wenc, Yuangeng Huanga, Siqi Wua a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China b School of Earth Sciences, University of Bristol, BS8 1QU, UK c Chengdu Center of China Geological Survey, Chengdu 610081, China ARTICLE INFO ABSTRACT Keywords: As the higher trophic guilds in marine food chains, top predators such as larger fishes and reptiles are important Lower Triassic indicators that a marine ecosystem has recovered following a crisis. Early Triassic marine fishes and reptiles Fish nodule therefore are key proxies in reconstructing the ecosystem recovery process after the end-Permian mass extinc- Redox condition tion. In South China, the Early Triassic Jurong fish fauna is the earliest marine vertebrate assemblage inthe Ecosystem recovery period. It is constrained as mid-late Smithian in age based on both conodont biostratigraphy and carbon Taphonomy isotopic correlations. The Jurong fishes are all preserved in calcareous nodules embedded in black shaleofthe Lower Triassic Lower Qinglong Formation, and the fauna comprises at least three genera of Paraseminotidae and Perleididae. The phosphatic fish bodies often show exceptionally preserved interior structures, including net- work structures of possible organ walls and cartilages. Microanalysis reveals the well-preserved micro-structures (i.e. collagen layers) of teleost scales and fish fins.
    [Show full text]
  • Lombardy 2012 Part A
    Pan-European Correlation of the Triassic 9th International Field Workshop September 1-5, 2012 The Middle-Late Triassic of Lombardy (I) and Canton Ticino (CH) By Flavio Jadoul and Andrea Tintori 2 This Field Trip had support from: Convenzione dei Comuni italiani del Monte San Giorgio/UNESCO Fondazione UNESCO- Monte San Giorgio Svizzera Comunità Montana della Valsassina, Valvarrone, Val d’Esino e Riviera Parco Regionale della Grigna Settentrionale 3 September 2, first day by Andrea Tintori and Markus Felber MONTE SAN GIORGIO IS UNESCO WORLD HERITAGE SITE Monte San Giorgio is among the most important fossil-bearing sites in the world, in particular concerning the middle Triassic fauna (245-230 million years ago). Following the UNESCO inscription of the Swiss side of the mountain in 2003, the Italian side has been inscribed in 2010, stating that: “Monte San Giorgio is the only and best known evidence of the marine Triassic life but also preserves some important remains of terrestrial organisms. The numerous and diverse fossil finds are exceptionally preserved and complete. The long history of the research and the controlled management of the paleontological resources have allowed thorough studies and the classification of exceptional specimens which are the basis for a rich scientific paper production. For all these reasons Monte San Giorgio represents the main reference in the world concerning the Triassic faunas.” 4 THE GEOLOGICAL HISTORY OF MONTE SAN GIORGIO Monte San Giorgio belongs to the broad tectonic feature named Sudalpino , which encompasses all the rock formations lying South of the Insubric Line. The oldest rocks of Monte San Giorgio outcrop in spots along the shores of the Ceresio Lake, between the Brusino Arsizio custom house and the built-up area of Porto Ceresio.
    [Show full text]
  • Osteichthyes, Actinopterygii) from the Early Triassic of Northwestern Madagascar
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 123(2): 219-242. July 2017 REDESCRIPTION OF ‘PERLEIDUS’ (OSTEICHTHYES, ACTINOPTERYGII) FROM THE EARLY TRIASSIC OF NORTHWESTERN MADAGASCAR GIUSEPPE MARRAMÀ1*, CRISTINA LOMBARDO2, ANDREA TINTORI2 & GIORGIO CARNEVALE3 1*Corresponding author. Department of Paleontology, University of Vienna, Geozentrum, Althanstrasse 14, 1090 Vienna, Austria. E-mail: [email protected] 2Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli 34, I-20133 Milano, Italy. E-mail: cristina.lombardo@ unimi.it; [email protected] 3Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy. E-mail: giorgio.carnevale@ unito.it To cite this article: Marramà G., Lombardo C., Tintori A. & Carnevale G. (2017) - Redescription of ‘Perleidus’ (Osteichthyes, Actinopterygii) from the Early Triassic of northwestern Madagascar . Riv. It. Paleontol. Strat., 123(2): 219-242. Keywords: Teffichthys gen. n.; TEFF; Ankitokazo basin; geometric morphometrics; intraspecific variation; basal actinopterygians. Abstract. The revision of the material from the Lower Triassic fossil-bearing-nodule levels from northwe- stern Madagascar supports the assumption that the genus Perleidus De Alessandri, 1910 is not present in the Early Triassic. In the past, the presence of this genus has been reported in the Early Triassic of Angola, Canada, China, Greenland, Madagascar and Spitsbergen. More recently, it has been pointed out that these taxa may not be ascri- bed to Perleidus owing to several anatomical differences. The morphometric, meristic and morphological analyses revealed a remarkable ontogenetic and individual intraspecific variation among dozens of specimens from the lower Triassic of Ankitokazo basin, northwestern Madagascar and allowed to consider the two Malagasyan species P.
    [Show full text]
  • Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems After the Permo-Triassic Mass Extinction
    Earth-Science Reviews 125 (2013) 199–243 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Exceptional vertebrate biotas from the Triassic of China, and the expansion of marine ecosystems after the Permo-Triassic mass extinction Michael J. Benton a,⁎, Qiyue Zhang b, Shixue Hu b, Zhong-Qiang Chen c, Wen Wen b, Jun Liu b, Jinyuan Huang b, Changyong Zhou b, Tao Xie b, Jinnan Tong c, Brian Choo d a School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b Chengdu Center of China Geological Survey, Chengdu 610081, China c State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China d Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China article info abstract Article history: The Triassic was a time of turmoil, as life recovered from the most devastating of all mass extinctions, the Received 11 February 2013 Permo-Triassic event 252 million years ago. The Triassic marine rock succession of southwest China provides Accepted 31 May 2013 unique documentation of the recovery of marine life through a series of well dated, exceptionally preserved Available online 20 June 2013 fossil assemblages in the Daye, Guanling, Zhuganpo, and Xiaowa formations. New work shows the richness of the faunas of fishes and reptiles, and that recovery of vertebrate faunas was delayed by harsh environmental Keywords: conditions and then occurred rapidly in the Anisian. The key faunas of fishes and reptiles come from a limited Triassic Recovery area in eastern Yunnan and western Guizhou provinces, and these may be dated relative to shared strati- Reptile graphic units, and their palaeoenvironments reconstructed.
    [Show full text]
  • From the Middle Triassic of Southern China
    Bollettino della Società Paleontologica Italiana, 50 (2), 2011, 75-83. Modena, 31 ottobre 201175 A new species of the genus Perleidus (Actinopterygii: Perleidiformes) from the Middle Triassic of Southern China Cristina LOMBARDO, Zuo-Yu SUN, Andrea TINTORI, Da-Yong JIANG & Wei-Cheng HAO C. Lombardo, Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, I-20113, Milano, Italy; [email protected] Z.-Y. Sun, Department of Geology and Geological Museum, Peking University, Beijing 100871, People’s Republic of China; [email protected] A. Tintori, Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, I-20113, Milano, Italy; [email protected] D.-Y. Jiang, Department of Geology and Geological Museum, Peking University, Beijing 100871, People’s Republic of China; [email protected] W.-C. Hao, Department of Geology and Geological Museum, Peking University, Beijing 100871, People’s Republic of China; [email protected] KEY WORDS - Actinopterygians, Perleidiformes, Perleidus sinensis n. sp., Middle Triassic, Southern China, Tethys. ABSTRACT - Perleidus sinensis n. sp., a new species of “Subholostean” fossil fish of the order Perleidiformes is described herein on the basis of a single, well-preserved specimen collected from the Upper Member of the Guanling Formation (Pelsonian, Middle Anisian, Middle Triassic) outcropping near Luoping (Yunnan Province) in South China. The vertebrate assemblage yielded by these levels is proving to be of importance with regard to the marine Triassic
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 A Hiatus Obscures the Early Evolution of Modern Lineages of Bony Fishes Romano, Carlo Abstract: About half of all vertebrate species today are ray-finned fishes (Actinopterygii), and nearly all of them belong to the Neopterygii (modern ray-fins). The oldest unequivocal neopterygian fossils are known from the Early Triassic. They appear during a time when global fish faunas consisted of mostly cosmopolitan taxa, and contemporary bony fishes belonged mainly to non-neopterygian (“pale- opterygian”) lineages. In the Middle Triassic (Pelsonian substage and later), less than 10 myrs (million years) after the Permian-Triassic boundary mass extinction event (PTBME), neopterygians were already species-rich and trophically diverse, and bony fish faunas were more regionally differentiated compared to the Early Triassic. Still little is known about the early evolution of neopterygians leading up to this first diversity peak. A major factor limiting our understanding of this “Triassic revolution” isaninter- val marked by a very poor fossil record, overlapping with the Spathian (late Olenekian, Early Triassic), Aegean (Early Anisian, Middle Triassic), and Bithynian (early Middle Anisian) substages. Here, I review the fossil record of Early and Middle Triassic marine bony fishes (Actinistia and Actinopterygii) at the substage-level in order to evaluate the impact of this hiatus–named herein the Spathian–Bithynian gap (SBG)–on our understanding of their diversification after the largest mass extinction event of the past. I propose three hypotheses: 1) the SSBE hypothesis, suggesting that most of the Middle Triassic diver- sity appeared in the aftermath of the Smithian-Spathian boundary extinction (SSBE; ฀2 myrs after the PTBME), 2) the Pelsonian explosion hypothesis, which states that most of the Middle Triassic ichthyo- diversity is the result of a radiation event in the Pelsonian, and 3) the gradual replacement hypothesis, i.e.
    [Show full text]
  • Fossils Provide Better Estimates of Ancestral Body Size Than Do Extant
    Acta Zoologica (Stockholm) 90 (Suppl. 1): 357–384 (January 2009) doi: 10.1111/j.1463-6395.2008.00364.x FossilsBlackwell Publishing Ltd provide better estimates of ancestral body size than do extant taxa in fishes James S. Albert,1 Derek M. Johnson1 and Jason H. Knouft2 Abstract 1Department of Biology, University of Albert, J.S., Johnson, D.M. and Knouft, J.H. 2009. Fossils provide better Louisiana at Lafayette, Lafayette, LA estimates of ancestral body size than do extant taxa in fishes. — Acta Zoologica 2 70504-2451, USA; Department of (Stockholm) 90 (Suppl. 1): 357–384 Biology, Saint Louis University, St. Louis, MO, USA The use of fossils in studies of character evolution is an active area of research. Characters from fossils have been viewed as less informative or more subjective Keywords: than comparable information from extant taxa. However, fossils are often the continuous trait evolution, character state only known representatives of many higher taxa, including some of the earliest optimization, morphological diversification, forms, and have been important in determining character polarity and filling vertebrate taphonomy morphological gaps. Here we evaluate the influence of fossils on the interpretation of character evolution by comparing estimates of ancestral body Accepted for publication: 22 July 2008 size in fishes (non-tetrapod craniates) from two large and previously unpublished datasets; a palaeontological dataset representing all principal clades from throughout the Phanerozoic, and a macroecological dataset for all 515 families of living (Recent) fishes. Ancestral size was estimated from phylogenetically based (i.e. parsimony) optimization methods. Ancestral size estimates obtained from analysis of extant fish families are five to eight times larger than estimates using fossil members of the same higher taxa.
    [Show full text]
  • Anewlatepermianray-Finned(Actinopterygian)Fishfrom the Beaufort Group, South Africa
    Palaeont. afr., 38, 33-47 (2002) ANEWLATEPERMIANRAY-FINNED(ACTINOPTERYGIAN)FISHFROM THE BEAUFORT GROUP, SOUTH AFRICA by Patrick Bender Council for Geoscience, Private Bag X112, Pretoria, South Africa. e-mail: [email protected] ABSTRACT A new genus and species of actinopterygian (ray-finned) fish, Kompasia delaharpei, is described from Late Permian (Tatarian) fluvio-lacustrine, siltstone dominated deposits within the lower Beaufort Group of South Africa. It is currently known from two localities on adjoining farms, Wilgerbosch and Ganora, both in the New Bethesda district of the Eastern Cape Karoo region. The fossils were recovered from an uncertain formation, possibly closely equivalent to the Balfour Formation, within the Dicynodon Assemblage Zone. Kompasia delaharpei differs from previously described early actinopterygians, including the recently described new lower Beaufort Group taxon Bethesdaichthys kitchingi, on the basis of a combination of skull and post cranial characters. The genus is characterised by: a uniquely shaped subrectangular posterior blade of the maxilla, a shortened dorsal limb of the preopercular, and a dermopterotic and dermosphenotic contacting the nasal; furthermore, the subopercular is equal to or longer than the opercular, the dorsal fin is situated in the posterior third of the body, slightly behind the position of the anal fin, and the anterior rnidflank scales exhibit a smooth dermal pattern or surface, with a number of faint ganoine ridges present parallel to the posterior and ventral scale margins. Kompasia appears to exhibit a relatively conservative morphology similar to that in the lower Beaufort Group taxon Bethesdaichthys kitchingi. As such, Kompasia is derived relative to stem-actinopterans such as Howqualepis, Mimia and Moythomasia, and also derived relative to earlier southern African Palaeozoic actinopterygians such as Mentzichthys jubbi and Namaichthys schroederi, but basal to stem-neopterygians such as Australosomus and Saurichthys.
    [Show full text]
  • A New Actinopterygian Fish Species from the Late Permian Beaufort Group, South Africa
    Palaeont. a.fr., 37, 25-40 (2001) A NEW ACTINOPTERYGIAN FISH SPECIES FROM THE LATE PERMIAN BEAUFORT GROUP, SOUTH AFRICA by Patrick Bender Council for Geoscience, Private Bag Xl12, Pretoria, South Africa. e-mail·bender@.?li:co.za ABSTRACT A new genus and species of actinopterygian (ray-finned) fish, Bethesdaichthys kitchingi, is described from the Tatarian, Late Permian, Lower Beaufort Group of South Africa. Bethesdaichthys is presently known from three localities, two in the New Bethesda and one in the Victoria West districts of the Karoo region respectively. The fossils were recovered from within the Abrahamskraal Formation Tapinocephalus Assemblage Zone at the Victoria West locality, and from an uncertain Formation possibly closely equivalent to the Balfour Formation, within the Dicynodon Assemblage Zone at the New Bethesda sites. Bethesdaichthys kitchingi is a fusiform fish, up to approximately 300mm in total length, with the skull displaying a moderately oblique suspensorium, and a maxilla with a large sub-rectangular postorbital blade. Furthermore there is a complex offour suborbital bones adjacent to the orbit. The pectoral fin is large relative to body size and the tail is heterocercal with an elongate tapered dorsal body lobe. The anterior midflank scales in particular exhibit a distinctive dermal ornamentation consisting of numerous ganoineridges. The phylogenetics and interrelationships of Bethesdaichthys kitchingiare examined. It appears to exhibit a relatively conservative morphology similar to that found in possibly related Carboniferous taxa such as the South African taxa Australichthysand Willomorichthys. Bethesdaichthys kitchingiis derived relative to stem-actinopterans such as the Howqualepis and Mimia, and also derived relative to southern African Palaeozoic actinoptyerygians such as Mentzichthys jubbl; and Namaichthys schroeden; but basal to stem­ neopterygians such as Australosomus, Perleldus and Saurichthys.
    [Show full text]