1 Summary of Product Characteristics

Total Page:16

File Type:pdf, Size:1020Kb

1 Summary of Product Characteristics SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Augmentin 100 mg/12.5 mg/ml powder for oral suspension 2. QUALITATIVE AND QUANTITATIVE COMPOSITION When reconstituted, every ml of oral suspension contains amoxicillin trihydrate equivalent to 100 mg amoxicillin and potassium clavulanate equivalent to 12.5 mg of clavulanic acid. Excipients with known effect Every ml of oral suspension contains 3.2 mg aspartame (E951). The flavouring in Augmentin contains maltodextrin (glucose) (see section 4.4). This medicine contains 1.7 mg sodium benzoate (E211) per ml. For the full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for oral suspension. Off-white powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Augmentin is indicated for the treatment of the following infections in adults and children (see sections 4.2, 4.4 and 5.1): Acute bacterial sinusitis (adequately diagnosed) Acute otitis media Acute exacerbations of chronic bronchitis (adequately diagnosed) Community acquired pneumonia Cystitis Pyelonephritis Skin and soft tissue infections in particular cellulitis, animal bites, severe dental abscess with spreading cellulitis Bone and joint infections, in particular osteomyelitis. Consideration should be given to official guidance on the appropriate use of antibacterial agents. 4.2 Posology and method of administration Posology Doses are expressed throughout in terms of amoxicillin/clavulanic acid content except when doses are stated in terms of an individual component. The dose of Augmentin that is selected to treat an individual infection should take into account: The expected pathogens and their likely susceptibility to antibacterial agents (see section 4.4) 2 The severity and the site of the infection The age, weight and renal function of the patient as shown below. The use of alternative presentations of Augmentin (e.g. those that provide higher doses of amoxicillin and/or different ratios of amoxicillin to clavulanic acid) should be considered as necessary (see sections 4.4 and 5.1). For children < 40 kg, this formulation of Augmentin provides a maximum daily dose of 1600-3000 mg amoxicillin/200-400 mg clavulanic acid, when administered as recommended below. If it is considered that a higher daily dose of amoxicillin is required, it is recommended that another preparation of Augmentin is selected in order to avoid administration of unnecessarily high daily doses of clavulanic acid (see sections 4.4 and 5.1). The duration of therapy should be determined by the response of the patient. Some infections (e.g. osteomyelitis) require longer periods of treatment. Treatment should not be extended beyond 14 days without review (see section 4.4 regarding prolonged therapy). Adults and children 40 kg should be treated with the adult formulations of Augmentin. Children < 40 kg Children may be treated with Augmentin tablets, suspensions or paediatric sachets. Recommended dose: 40 mg/5 mg/kg/day to 80 mg/10 mg/kg/day (not exceeding 3000 mg/375 mg per day) given in three divided doses, depending on the severity of infection. There are no clinical data for the 8:1 formulation for patients under 1 month of age. Additional text for markets using millilitre graduated dosage measurements: 40 mg/5 mg/kg/ 80 mg/10 mg/kg/ 40 mg/5 mg/kg/ 80 mg/10 mg/kg/ Weight day dose (ml). day dose (ml). Weight day dose (ml). day dose (ml). (kg) Given three times Given three times (kg) Given three times Given three times daily. daily. daily. daily. 2.0 0.3 0.5 21.0 2.8 5.6 3.0 0.4 0.8 22.0 2.9 5.9 4.0 0.5 1.1 23.0 3.1 6.1 5.0 0.7 1.3 24.0 3.2 6.4 6.0 0.8 1.6 25.0 3.3 6.7 7.0 0.9 1.9 26.0 3.5 6.9 8.0 1.1 2.1 27.0 3.6 7.2 9.0 1.2 2.4 28.0 3.7 7.5 10.0 1.3 2.7 29.0 3.9 7.7 11.0 1.5 2.9 30.0 4.0 8.0 12.0 1.6 3.2 31.0 4.1 8.3 13.0 1.7 3.5 32.0 4.3 8.5 14.0 1.9 3.7 33.0 4.4 8.8 15.0 2.0 4.0 34.0 4.5 9.1 16.0 2.1 4.3 35.0 4.7 9.3 3 17.0 2.3 4.5 36.0 4.8 9.6 18.0 2.4 4.8 37.0 4.9 9.9 19.0 2.5 5.1 38.0 5.1 NR 20.0 2.7 5.3 39.0 5.2 NR NR – Not recommended. Children weighing more than 37.5 kg should not be treated at the higher dose of 80 mg/kg/day so as not to exceed the recommended maximum daily limit. Alternatively, the dose (ml) to be given to the patient three times daily can be calculated using the following formula below: * Dose (ml) given Recommended amoxicillin dose (mg/kg/day) x weight (kg) = three times daily Reconstituted amoxicillin* in suspension (mg/ml) x 3 (daily doses) * Only consideration of the amoxicillin component is required for this calculation. For example, a 6 kg child treated at 80 mg/10 mg/kg/day: Dose (ml) given 80 (mg/kg/day) x 6 (kg) = three times daily 100 (mg/ml) x 3 (daily doses) + Dose (ml) given 480 (mg) = three times daily 300 (mg/ml) Dose (ml) given = 1.6 ml three times daily + Must not exceed 3000 mg amoxicillin. Elderly No dose adjustment is considered necessary. Renal impairment No dose adjustment is required in patients with creatinine clearance (CrCl) greater than 30 ml/min. In patients with creatinine clearance less than 30 ml/min, the use of Augmentin presentations with an amoxicillin to clavulanic acid ratio of 8:1 is not recommended, as no recommendations for dose adjustments are available. Hepatic impairment Dose with caution and monitor hepatic function at regular intervals (see sections 4.3 and 4.4). Method of administration Augmentin is for oral use. 4 Augmentin should be administered with a meal to minimise potential gastrointestinal intolerance. Therapy can be started parenterally according to the SmPC of the IV formulation and continued with an oral preparation. Shake to loosen powder, add water as directed, invert and shake. Shake the bottle before each dose (see section 6.6). For instructions on reconstitution of the medicinal product before administration, see section 6.6. 4.3 Contraindications Hypersensitivity to the active substances, to any of the penicillins or to any of the excipients listed in section 6.1. History of a severe immediate hypersensitivity reaction (e.g. anaphylaxis) to another beta-lactam agent (e.g. a cephalosporin, carbapenem or monobactam). History of jaundice/hepatic impairment due to amoxicillin/clavulanic acid (see section 4.8). 4.4 Special warnings and precautions for use Before initiating therapy with amoxicillin/clavulanic acid, careful enquiry should be made concerning previous hypersensitivity reactions to penicillins, cephalosporins or other beta-lactam agents (see sections 4.3 and 4.8). Serious and occasionally fatal hypersensitivity reactions (including anaphylactoid and severe cutaneous adverse reactions) have been reported in patients on penicillin therapy. These reactions are more likely to occur in individuals with a history of penicillin hypersensitivity and in atopic individuals. If an allergic reaction occurs, amoxicillin/clavulanic acid therapy must be discontinued and appropriate alternative therapy instituted. In the case that an infection is proven to be due to an amoxicillin-susceptible organisms(s) then consideration should be given to switching from amoxicillin/clavulanic acid to amoxicillin in accordance with official guidance. This presentation of Augmentin may not be suitable for use when there is a high risk that the presumptive pathogens have reduced susceptibility or resistance to beta-lactam agents that is not mediated by beta-lactamases susceptible to inhibition by clavulanic acid. This presentation may not be suitable for treatment of penicillin-resistant S. pneumoniae. Convulsions may occur in patients with impaired renal function or in those receiving high doses (see section 4.8). Amoxicillin/clavulanic acid should be avoided if infectious mononucleosis is suspected since the occurrence of a morbilliform rash has been associated with this condition following the use of amoxicillin. Concomitant use of allopurinol during treatment with amoxicillin can increase the likelihood of allergic skin reactions. Prolonged use may occasionally result in overgrowth of non-susceptible organisms. 5 The occurrence at the treatment initiation of a feverish generalised erythema associated with pustula may be a symptom of acute generalised exanthemous pustulosis (AGEP) (see section 4.8). This reaction requires Augmentin discontinuation and contraindicates any subsequent administration of amoxicillin. Amoxicillin/clavulanic acid should be used with caution in patients with evidence of hepatic impairment (see sections 4.2, 4.3 and 4.8). Hepatic events have been reported predominantly in males and elderly patients and may be associated with prolonged treatment. These events have been very rarely reported in children. In all populations, signs and symptoms usually occur during or shortly after treatment but in some cases may not become apparent until several weeks after treatment has ceased. These are usually reversible. Hepatic events may be severe and in extremely rare circumstances, deaths have been reported. These have almost always occurred in patients with serious underlying disease or taking concomitant medications known to have the potential for hepatic effects (see section 4.8). Antibiotic-associated colitis has been reported with nearly all antibacterial agents including amoxicillin and may range in severity from mild to life threatening (see section 4.8).
Recommended publications
  • 1072 ICAAC Fritschen MW08 F
    POSTER E-0115 Thomas R. Fritsche, MD, PhD In-vitro Activity of Ceftobiprole Tested Against a Recent Collection of JMI Laboratories ICAAC 2006 345 Beaver Kreek Centre, Suite A North American Pseudomonas aeruginosa North Liberty, IA 52317 Tel: (319) 665-3370 T.R. Fritsche, H.S. Sader, R.N. Jones • JMI Laboratories, North Liberty, Iowa, USA Fax: (319) 665-3371 e-mail: [email protected] Introduction Results Updated Abstract Table 1. In-vitro activity of ceftobiprole in comparison to selected antimicrobial agents tested against 221 isolates of P. aeruginosa Ceftobiprole (previously known as BAL9141), is an investigational broad- (North America) • P. aeruginosa isolates recovered from patients in North America generally Background: Ceftobiprole (BAL9141; BPR) is an investigational spectrum cephalosporin with potent activity against both Gram-negative and displayed less antibiotic resistance than did isolates from the all-isolate Antimicrobial agent MIC (µg/ml) MIC (µg/ml) Range (µg/ml) % Susceptible/resistanta cephalosporin with a broad spectrum of activity including methicillin- Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus 50 90 worldwide collection (examples: tobramycin, 3.6 and 20.8% resistance, resistant S. aureus. PK/PD characteristics of the parenteral prodrug (MRSA) (3, 7-9). The agent is stable to many β-lactamases and has a Ceftobiprole 2 >8 ≤0.06 – >8 - / - respectively; imipenem, 5.9 and 11.6%; Tables 1 and 2). formulation are consistent with usable potencies against streptococci, Ceftazidime 2 >16 ≤1 – >16 78.7 / 15.8 strong affinity for penicillin binding proteins (PBPs), including PBP2a, which • Ceftobiprole was as active as ceftazidime and cefepime (MIC , 2 µg/ml) E.
    [Show full text]
  • Possible Clinical Indications of Ceftobiprole
    ©The Author 2019. Published by Sociedad Española de Quimioterapia. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)(https://creativecommons.org/licenses/by-nc/4.0/). Ceftobiprole review José Barberán Possible clinical indications of ceftobiprole Servicio de Medicina Interna - Enfermedades infecciosas, Hospital Universitario HM Montepríncipe, Universidad San Pablo CEU. Madrid, Spain ABSTRACT demonstrated in vitro activity on the majority of Gram-positive cocci and aerobic Gram-negative bacilli of clinical relevance. Ceftobiprole is a fifth-generation cephalosporin approved On the former, it has heightened bactericidal action and in- for the treatment of adult community-acquired pneumonia cludes: 1) Staphylococcus spp., both methicillin- and vancomy- and non-ventilator associated hospital-acquired pneumonia. cin-resistant Staphylococcus aureus and coagulase-negative However, its microbiological and pharmacokinetic profile is staphylococci, 2) Streptococcus spp., including Streptococ- very attractive as armamentarium for empirical monotherapy cus pneumoniae resistant to penicillins and third-generation treatment in other infections too. Among these, the following cephalosporins, and 3) Enterococcus faecalis, as it is the first scenarios could be considered complicated skin and soft tissue and only cephalosporin here with demonstrated activity. With infections, moderate-severe diabetic foot infections without regard to Gram-negative bacilli, its spectrum includes
    [Show full text]
  • Topical Antibiotics for Impetigo: a Review of the Clinical Effectiveness and Guidelines
    CADTH RAPID RESPONSE REPORT: SUMMARY WITH CRITICAL APPRAISAL Topical Antibiotics for Impetigo: A Review of the Clinical Effectiveness and Guidelines Service Line: Rapid Response Service Version: 1.0 Publication Date: February 21, 2017 Report Length: 23 Pages Authors: Rob Edge, Charlene Argáez Cite As: Topical antibiotics for impetigo: a review of the clinical effectiveness and guidelines. Ottawa: CADTH; 2017 Feb. (CADTH rapid response report: summary with critical appraisal). ISSN: 1922-8147 (online) Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services. While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document.
    [Show full text]
  • Consideration of Antibacterial Medicines As Part Of
    Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1.
    [Show full text]
  • Interest in the Physical, Chemical and Spectroscopic Properties of the P
    VOL. XXVII NO. 3 THE JOURNAL OF ANTIBIOTICS 215 A CHIROPTICAL STUDY OF PENICILLINS L. A MITSCHER, PETER W. HOWISON* and THEODORE D. SOKOLOSKI Division of Natural Products Chemistry The Ohio State University, Columbus, Ohio 43210. U.S. A. (Received for publication November 9, 1973) ORD and CD spectra are reported for a series of penicillin antibiotics and related degradation products. The results, when compared with published X-ray data, suggest that some conformational changes can apparently go undetected by chiroptical techniques in this series and that the side chain substituent at C6 plays a relatively minor role in determining the sign and intensity of the COTTON effect unless its stereochemistry is inverted. The rather large spectroscopic effect following Ca epimerization has potential for development as an assay for the percentage of 6-epihetacillin in a given mixture. Some preliminary data are presented showing the utility of this method for investigating the kinetics of CB epimerization. Semiempirical predictive rules developed for simple amides are inadequate for rationalizing the penicillin spectra. The origin of the COTTON effects is briefly discussed and contrasted with the cephalosporin antibiotics. Interest in the physical, chemical and spectroscopic properties of the p-lactam antibiotics remains high because of their outstanding clinical utility and a desire to rationalize their mode of action on a molecular level. A recent review volume has collected much of this scattered information1). One of the techniques which has found wide application for the study of the stereo-chemistry and solution conformation of antibiotics is optical rotatory dispersion and circular dichroism spectroscopy2). Although CD measurements of the cephalosporins have been discussed 3,4) no corresponding study of the chiroptical properties of the penicillins has yet appeared except in brief extracts'.
    [Show full text]
  • A Thesis Entitled an Oral Dosage Form of Ceftriaxone Sodium Using Enteric
    A Thesis entitled An oral dosage form of ceftriaxone sodium using enteric coated sustained release calcium alginate beads by Darshan Lalwani Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences with Industrial Pharmacy Option _________________________________________ Jerry Nesamony, Ph.D., Committee Chair _________________________________________ Sai Hanuman Sagar Boddu, Ph.D, Committee Member _________________________________________ Youssef Sari, Ph.D., Committee Member _________________________________________ Patricia R. Komuniecki, PhD, Dean College of Graduate Studies The University of Toledo May 2015 Copyright 2015, Darshan Narendra Lalwani This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of An oral dosage form of ceftriaxone sodium using enteric coated sustained release calcium alginate beads by Darshan Lalwani Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences with Industrial Pharmacy option The University of Toledo May 2015 Purpose: Ceftriaxone (CTZ) is a broad spectrum semisynthetic, third generation cephalosporin antibiotic. It is an acid labile drug belonging to class III of biopharmaceutical classification system (BCS). It can be solvated quickly but suffers from the drawback of poor oral bioavailability owing to its limited permeability through
    [Show full text]
  • Antibiotics Currently in Clinical Development
    A data table from Feb 2018 Antibiotics Currently in Global Clinical Development Note: This data visualization was updated in December 2017 with new data. As of September 2017, approximately 48 new antibiotics1 with the potential to treat serious bacterial infections are in clinical development. The success rate for clinical drug development is low; historical data show that, generally, only 1 in 5 infectious disease products that enter human testing (phase 1 clinical trials) will be approved for patients.* Below is a snapshot of the current antibiotic pipeline, based on publicly available information and informed by external experts. It will be updated periodically, as products advance or are known to drop out of development. Because this list is updated periodically, endnote numbers may not be sequential. In September 2017, the antibiotics pipeline was expanded to include products in development globally. Please contact [email protected] with additions or updates. Expected activity Expected activity against CDC Development against resistant Drug name Company Drug class Target urgent or WHO Potential indication(s)?5 phase2 Gram-negative critical threat ESKAPE pathogens?3 pathogen?4 Approved for: Acute bacterial skin and skin structure infections; other potential Baxdela Approved June 19, Melinta Bacterial type II Fluoroquinolone Possibly No indications: community-acquired bacterial (delafloxacin) 2017 (U.S. FDA) Therapeutics Inc. topoisomerase pneumonia and complicated urinary tract infections6 Approved for: Complicated urinary Rempex tract infections including pyelonephritis; Vabomere Pharmaceuticals β-lactam (carbapenem) other potential indications: complicated Approved Aug. 30, (Meropenem + Inc. (wholly owned + β-lactamase inhibitor PBP; β-lactamase Yes Yes (CRE) intra-abdominal infections, hospital- 2017 (U.S.
    [Show full text]
  • Negative Pathogens from Hospital-Acquired Pneumonia in the UK and Ireland Since 2011 Beate Ritz*1, Nowel Redder1, Nathalie Dunkel1
    P1865 Susceptibility of ceftobiprole and other beta-lactams against Gram- negative pathogens from hospital-acquired pneumonia in the UK and Ireland since 2011 Beate Ritz*1, Nowel Redder1, Nathalie Dunkel1 1 Correvio, Geneva, Switzerland Background: Ceftobiprole, an advanced-generation cephalosporin has been approved since 2013 in the United Kingdom and other European countries for the treatment of community- and hospital-acquired pneumonia (HAP) (excluding ventilator-associated pneumonia). BSAC respiratory surveillance programme includes ceftobiprole since 2011. Materials/methods: Gram-negative pathogens causing HAP were collected as part of the BSAC respiratory surveillance programme between 2011-12 to 2016-17. In total 1290 Escherichia coli, 789 Klebsiella pneumoniae and 1059 Pseudomonas aeruginosa were tested using the BSAC agar dilution method and susceptibility determined according to EUCAST breakpoints. Results: Virtually all E. coli and K. pneumoniae tested were susceptible to meropenem whereas the other beta- lactams tested had similar in vitro efficacy with the exception of amoxicillin/clavulanic acid. Meropenem had the lowest susceptibility to P. aeruginosa followed by ceftobiprole, piperacillin/tazobactam and ceftazidime. K. P. E. coli pneumoniae aeruginosa Range MIC50 MIC90 %S Range MIC50 MIC90 %S Range MIC50 0.03- 0.03- 0.25- BPR 0.06 16 86.0 0.06 64 83.3 2 512 512 512 0.5- 0.25- AMC 16 128 47.5 2 64 76.7 NA NA 128 128 0.03- 0.03- 0.06- CAZ 0.25 4 85.5 0.25 16 84.0 2 256 512 512 0.125- 0.25- 0.125- TZP 2 16 88.9 4 32 81.5 4 512 512 512 0.008- 0.008- 0.032- MEM 0.016 0.032 100 0.032 0.032 98.8 0.25 0.125 512 64 *based on EUCAST PK/PD non-species specific susceptibility breakpoint of 4 mg/L; BPR: ceftobiprole; AMC: amoxicillin/clavulanic acid; CAZ: ceftazidime; TZP: piperacillin/tazobactam; MEM: meropenem Conclusions: On this large collection of Gram-negative pathogens, E.
    [Show full text]
  • DICLOXACILLIN SODIUM- Dicloxacillin Sodium Capsule Teva Pharmaceuticals USA, Inc
    DICLOXACILLIN SODIUM- dicloxacillin sodium capsule Teva Pharmaceuticals USA, Inc. ---------- Dicloxacillin Sodium Capsules USP Rx only To reduce the development of drug resistant bacteria and maintain the effectiveness of dicloxacillin sodium capsules and other antibacterial drugs, dicloxacillin sodium capsules should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION Dicloxacillin sodium, USP is a semisynthetic antibiotic substance which resists destruction by the enzyme penicillinase (beta - lactamase). It is monosodium (2S,5R,6R)-6-[3-(2,6-dichlorophenyl)-5- methyl-4-isoxazolecarboxamido]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo [3.2.0]heptane-2-carboxylate monohydrate. Dicloxacillin is administered orally via capsule form or powder for reconstitution. Structurally, dicloxacillin sodium, USP may be represented as follows: C19H16Cl2N3NaO5 S·H2O MW 510.32 Inactive Ingredients Capsules Magnesium Stearate. Capsule Shell and Print Constituents D&C Yellow #10 Aluminum Lake, FD&C Blue #1 Aluminum Lake, FD&C Blue #1, FD&C Blue #2 Aluminum Lake, FD&C Red #40 Aluminum Lake, D&C Yellow #10, Gelatin, Shellac, Sodium Lauryl Sulfate, Sorbitan Monolaurate, Black Iron Oxide, Titanium Dioxide, Propylene Glycol. CLINICAL PHARMACOLOGY Microbiology Mechanism of Action Penicillinase-resistant penicillins exert a bactericidal action against penicillin-susceptible microorganisms during the state of active multiplication. All penicillins inhibit the biosynthesis of the bacterial cell wall. bacterial cell wall. Antibacterial Activity Dicloxacillin sodium has been shown to be active against most isolates of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section. Gram-positive Bacteria Staphylococcus spp.
    [Show full text]
  • Concept Paper
    Concept Paper: Potential Approach for Ranking of Antimicrobial Drugs According to Their Importance in Human Medicine: A Risk Management Tool for Antimicrobial New Animal Drugs Introduction This concept paper discusses a potential approach to considering the human medical importance of antimicrobial drugs when assessing and managing antimicrobial resistance risks associated with the use of antimicrobial drugs in animals. In 2003, FDA established a list ranking antimicrobial drugs according to their relative importance in human medicine primarily for the purpose of supporting a qualitative risk assessment process outlined in agency guidance. It was envisioned by the Agency at the time the current medical importance rankings list was published that it would periodically reassess the rankings to align with contemporary science and current human clinical practices. To that end, this paper describes a potential revised process for ranking antimicrobial drugs according to their relative importance in human medicine, potential revised criteria to determine the medical importance rankings, and the list of antimicrobial drug medical importance rankings that would result if those criteria were to be used. Disclaimer: This concept paper is for discussion purposes only. The intent of this concept paper is to obtain public comment and early input on a potential approach to consider the human medical importance of antimicrobial drugs when assessing and managing antimicrobial resistance risks associated with the use of antimicrobial drugs in animals. This concept paper does not contain recommendations and does not constitute draft or final guidance by the Food and Drug Administration. It should not be used for any purpose other than to facilitate public comment.
    [Show full text]
  • NDA Multidisciplinary Review and Evaluation
    Multidisciplinary Review and Evaluation of Efficacy Supplemental NDA 200327 S-22 Teflaro – ceftaroline fosamil NDA Multidisciplinary Review and Evaluation Application Type sNDA Application Number(s) 200327 Priority or Standard Standard Submit Date(s) November 13, 2018 Received Date(s) November 13, 2018 PDUFA Goal Date September 13, 2019 Division/Office Division of Anti-Infective Products Office of Antimicrobial Products Review Completion Date September 4, 2019 Established/Proper Name Ceftaroline fosamil Trade Name Teflaro Pharmacologic Class Cephalosporin class of beta-lactams Code name PPI-0903 (also known as TAK-599) Applicant Allergan Sales, LLC Dosage form Injection Applicant proposed Dosing 6 mg/kg every 8 hours as a (b) (4)-minute infusion in patients Regimen <2 months of age (b) (4) Applicant Proposed No new proposed indication. Updated labeling in Section 8.4 Indication(s)/Population(s) for patients less than 2 months of age. Regulatory Action Approval Indication(s)/Population(s) Acute Bacterial Skin and Skin Structure Infections (ABSSSI) in (if applicable) pediatric patients 0* to less than 2 months old (*Gestational age 34 weeks and older and postnatal age 12 days and older) Dosing Regimen 6 mg/kg every 8 hours by IV infusion administered over 30 to 60 min Version date: October 12, 2018 1 Reference ID: 4490056 Multidisciplinary Review and Evaluation of Efficacy Supplemental NDA 200327 S-22 Teflaro – ceftaroline fosamil Table of Contents Table of Contents ........................................................................................................
    [Show full text]
  • Gram Positive Cocci (GPC) Gram Neg (Rods = GNR) Anaerobes
    Gram Positive Cocci (GPC) Gram Neg (rods = GNR) Anaerobes Atypicals Classification Antibiotic Cluster Streptococcus Entero- Resp Enteric Non- Bacteroides, Mycoplasma = Staph β↓ & α-hemolytic↓ coccus (cocci) GI flora enteric Clostridium Legionella Beta-Lactams General Spectrum MSSA Group pneumo, faecalis H. flu, E. coli, Pseud- (non-dfficile) Chlamydia Penicillins of Activity → only A / B Viridans only M. cat Klebsiella omonas Peptostrep. (pneumonia) Natural Penicillin G IV/ PenVK PO +/- ++ + + 0 0 0 + 0 Anti- Oxacillin/Nafcillin IV, ++ ++ + 0 0 0 0 0 0 Staphylococcal Dicloxacillin PO Aminopenicillins Amp/Amoxicillin IV/PO 0 ++ + ++ +R +/- 0 + 0 Anti-Pseudomonal Piperacillin/Ticarcillin IV 0 + + + + + ++R + 0 Beta-Lactamase Clavulanate IV/PO, sulbactam Increase Inc by Increase Increase Inhibitor added tazobactam, vaborbactam IV by + + by + by + Cephalosporins Cefazolin IV/ ++ ++ +/- 0 +/- + 0 0 0 1st Generation Cephalexin PO 2nd Generation Cefuroxime IV/PO + ++ + 0 + + 0 +/- 0 Cephamycins Cefoxitin/Cefotetan IV 0 + 0 0 + + 0 + 0 3rd Generation Ceftriaxone/Cefotaxime IV + ++ ++ 0 ++ ++R 0 +/- 0 (PO in between 2nd Ceftazidime IV (+ Avibactam 0 + 0 0 ++ ++R ++R 0 0 and 3rd gen) for Carb-Resistant Enterics) 4th Generation Cefepime IV + ++ ++ 0 ++ ++ ++R 0 0 Novel Ceftolozane-tazo/Cefiderocol 0 + + 0 ++ ++ ++ +/- 0 Carbapenems Imipenem, Meropenem IV + + + +/- ++ ++ ++R ++ 0 (+rele/vaborbactam for CRE) Ertapenem IV + ++ ++ 0 ++ ++ 0 ++ 0 Monobactam Aztreonam IV 0 0 0 0 ++ ++R + 0 0 Non β-Lactams Includes MRSA Both sp. Aminoglycosides Gentamicin,
    [Show full text]