Storage and Transformation for Data Analysis Using Nosql
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beyond Relational Databases
EXPERT ANALYSIS BY MARCOS ALBE, SUPPORT ENGINEER, PERCONA Beyond Relational Databases: A Focus on Redis, MongoDB, and ClickHouse Many of us use and love relational databases… until we try and use them for purposes which aren’t their strong point. Queues, caches, catalogs, unstructured data, counters, and many other use cases, can be solved with relational databases, but are better served by alternative options. In this expert analysis, we examine the goals, pros and cons, and the good and bad use cases of the most popular alternatives on the market, and look into some modern open source implementations. Beyond Relational Databases Developers frequently choose the backend store for the applications they produce. Amidst dozens of options, buzzwords, industry preferences, and vendor offers, it’s not always easy to make the right choice… Even with a map! !# O# d# "# a# `# @R*7-# @94FA6)6 =F(*I-76#A4+)74/*2(:# ( JA$:+49>)# &-)6+16F-# (M#@E61>-#W6e6# &6EH#;)7-6<+# &6EH# J(7)(:X(78+# !"#$%&'( S-76I6)6#'4+)-:-7# A((E-N# ##@E61>-#;E678# ;)762(# .01.%2%+'.('.$%,3( @E61>-#;(F7# D((9F-#=F(*I## =(:c*-:)U@E61>-#W6e6# @F2+16F-# G*/(F-# @Q;# $%&## @R*7-## A6)6S(77-:)U@E61>-#@E-N# K4E-F4:-A%# A6)6E7(1# %49$:+49>)+# @E61>-#'*1-:-# @E61>-#;6<R6# L&H# A6)6#'68-# $%&#@:6F521+#M(7#@E61>-#;E678# .761F-#;)7-6<#LNEF(7-7# S-76I6)6#=F(*I# A6)6/7418+# @ !"#$%&'( ;H=JO# ;(\X67-#@D# M(7#J6I((E# .761F-#%49#A6)6#=F(*I# @ )*&+',"-.%/( S$%=.#;)7-6<%6+-# =F(*I-76# LF6+21+-671># ;G';)7-6<# LF6+21#[(*:I# @E61>-#;"# @E61>-#;)(7<# H618+E61-# *&'+,"#$%&'$#( .761F-#%49#A6)6#@EEF46:1-# -
CA SQL-Ease for DB2 for Z/OS User Guide
CA SQL-Ease® for DB2 for z/OS User Guide Version 17.0.00, Second Edition This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without the prior written consent of CA. If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with that software, provided that all CA copyright notices and legends are affixed to each reproduced copy. The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE POSSIBILITY OF SUCH LOSS OR DAMAGE. -
Database Solutions on AWS
Database Solutions on AWS Leveraging ISV AWS Marketplace Solutions November 2016 Database Solutions on AWS Nov 2016 Table of Contents Introduction......................................................................................................................................3 Operational Data Stores and Real Time Data Synchronization...........................................................5 Data Warehousing............................................................................................................................7 Data Lakes and Analytics Environments............................................................................................8 Application and Reporting Data Stores..............................................................................................9 Conclusion......................................................................................................................................10 Page 2 of 10 Database Solutions on AWS Nov 2016 Introduction Amazon Web Services has a number of database solutions for developers. An important choice that developers make is whether or not they are looking for a managed database or if they would prefer to operate their own database. In terms of managed databases, you can run managed relational databases like Amazon RDS which offers a choice of MySQL, Oracle, SQL Server, PostgreSQL, Amazon Aurora, or MariaDB database engines, scale compute and storage, Multi-AZ availability, and Read Replicas. You can also run managed NoSQL databases like Amazon DynamoDB -
Oracle Nosql Database EE Data Sheet
Oracle NoSQL Database 21.1 Enterprise Edition (EE) Oracle NoSQL Database is a multi-model, multi-region, multi-cloud, active-active KEY BUSINESS BENEFITS database, designed to provide a highly-available, scalable, performant, flexible, High throughput and reliable data management solution to meet today’s most demanding Bounded latency workloads. It can be deployed in on-premise data centers and cloud. It is well- Linear scalability suited for high volume and velocity workloads, like Internet of Things, 360- High availability degree customer view, online contextual advertising, fraud detection, mobile Fast and easy deployment application, user personalization, and online gaming. Developers can use a single Smart topology management application interface to quickly build applications that run in on-premise and Online elastic configuration cloud environments. Multi-region data replication Enterprise grade software Applications send network requests against an Oracle NoSQL data store to and support perform database operations. With multi-region tables, data can be globally distributed and automatically replicated in real-time across different regions. Data can be modeled as fixed-schema tables, documents, key-value pairs, and large objects. Different data models interoperate with each other through a single programming interface. Oracle NoSQL Database is a sharded, shared-nothing system which distributes data uniformly across multiple shards in a NoSQL database cluster, based on the hashed value of the primary keys. An Oracle NoSQL Database data store is a collection of storage nodes, each of which hosts one or more replication nodes. Data is automatically populated across these replication nodes by internal replication mechanisms to ensure high availability and rapid failover in the event of a storage node failure. -
Object Databases As Data Stores for High Energy Physics
OBJECT DATABASES AS DATA STORES FOR HIGH ENERGY PHYSICS Dirk Düllmann CERN IT/ASD & RD45, Geneva, Switzerland Abstract Starting from 2005, the LHC experiments will generate an unprecedented amount of data. Some 100 Peta-Bytes of event, calibration and analysis data will be stored and have to be analysed in a world-wide distributed environment. At CERN the RD45 project has been set-up in 1995 to investigate different approaches to solve the data storage problems at LHC. The focus of RD45 soon moved to the use of Object Database Management Systems (ODBMS) as a central component. This paper gives an overview of the main advantages of ODBMS systems for HEP data stores. Several prototype and production applications will be discussed and a summary of the current use of ODBMS based systems in HEP will be presented. The second part will concentrate on physics data analysis based on an ODBMS. 1 INTRODUCTION 1.1 Data Management at LHC The new experiments at the Large Hadron Collider (LHC) at CERN will gather an unprecedented amount of data. Starting from 2005 each of the four LHC experiments ALICE, ATLAS, CMS and LHCb will measure of the order of 1 Peta Byte (1015 Bytes) per year. All together the experiments will store and repeatedly analyse some 100 PB of data during their lifetimes. Such an enormous task can only be accomplished by large international collaborations. Thousands of physicists from hundreds of institutes world-wide will participate. This also implies that nearly any available hardware platform will be used resulting in a truly heterogeneous and distributed system. -
Database Software Market: Billy Fitzsimmons +1 312 364 5112
Equity Research Technology, Media, & Communications | Enterprise and Cloud Infrastructure March 22, 2019 Industry Report Jason Ader +1 617 235 7519 [email protected] Database Software Market: Billy Fitzsimmons +1 312 364 5112 The Long-Awaited Shake-up [email protected] Naji +1 212 245 6508 [email protected] Please refer to important disclosures on pages 70 and 71. Analyst certification is on page 70. William Blair or an affiliate does and seeks to do business with companies covered in its research reports. As a result, investors should be aware that the firm may have a conflict of interest that could affect the objectivity of this report. This report is not intended to provide personal investment advice. The opinions and recommendations here- in do not take into account individual client circumstances, objectives, or needs and are not intended as recommen- dations of particular securities, financial instruments, or strategies to particular clients. The recipient of this report must make its own independent decisions regarding any securities or financial instruments mentioned herein. William Blair Contents Key Findings ......................................................................................................................3 Introduction .......................................................................................................................5 Database Market History ...................................................................................................7 Market Definitions -
Server New Features Webfocus Server Release 8207 Datamigrator Server Release 8207
Server New Features WebFOCUS Server Release 8207 DataMigrator Server Release 8207 February 26, 2021 Active Technologies, FOCUS, Hyperstage, Information Builders, the Information Builders logo, iWay, iWay Software, Omni- Gen, Omni-HealthData, Parlay, RStat, Table Talk, WebFOCUS, WebFOCUS Active Technologies, and WebFOCUS Magnify are registered trademarks, and DataMigrator, and ibi are trademarks of Information Builders, Inc. Adobe, the Adobe logo, Acrobat, Adobe Reader, Flash, Adobe Flash Builder, Flex, and PostScript are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries. Due to the nature of this material, this document refers to numerous hardware and software products by their trademarks. In most, if not all cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher's intent to use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any of these names other than to refer to the product described. Copyright © 2021. TIBCO Software Inc. All Rights Reserved. Contents 1. Server Enhancements ........................................................ 11 Global WebFOCUS Server Monitoring Console ........................................... 11 Server Text Editor Supports Jump to Next or Previous Difference in Compare and Merge .......14 Upload Message Added in the Edaprint Log ............................................. 15 Displaying the -
Oracle, IBM DB2, and SQL RDBMS’
Enterprise Architecture Technical Brief Oracle, IBM DB2, and SQL RDBMS’ Robert Kowalke November 2017 Enterprise Architecture Oracle, IBM DB2, and SQL RDBMS Contents Database Recommendation ............................................................................................................. 3 Relational Database Management Systems (RDBMS) ................................................................... 5 Oracle v12c-r2 ............................................................................................................................ 5 IBM DB2 for Linux, Unix, Windows (LUW) ............................................................................ 6 Microsoft SQL Server (Database Engine) v2017 ...................................................................... 7 Additional Background Information ............................................................................................... 9 VITA Reference Information (To be removed) ......................... Error! Bookmark not defined. Page 2 of 15 [email protected] Enterprise Architecture Oracle, IBM DB2, and SQL RDBMS Database Recommendation Oracle, SQL Server, and DB2 are powerful RDBMS options. There are a number of differences in how they work “under the hood,” and in various situations, one may be more favorable than the other. 1 There is no easy answer, nor is there a silver-bullet for choosing one of these three (3) databases for your specific business requirements. Oracle is a very popular choice with the Fortune 100 list of companies and -
Adapting a Synonym Database to Specific Domains Davide Turcato Fred Popowich Janine Toole Dan Pass Devlan Nicholson Gordon Tisher Gavagai Technology Inc
Adapting a synonym database to specific domains Davide Turcato Fred Popowich Janine Toole Dan Pass Devlan Nicholson Gordon Tisher gavagai Technology Inc. P.O. 374, 3495 Ca~abie Street, Vancouver, British Columbia, V5Z 4R3, Canada and Natural Language Laboratory, School of Computing Science, Simon Fraser University 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada {turk, popowich ,toole, lass, devl an, gt i sher}@{gavagai, net, as, sfu. ca} Abstract valid for English, would be detrimental in a specific domain like weather reports, where This paper describes a method for both snow and C (for Celsius) occur very fre- adapting a general purpose synonym quently, but never as synonyms of each other. database, like WordNet, to a spe- We describe a method for creating a do- cific domain, where only a sub- main specific synonym database from a gen- set of the synonymy relations de- eral purpose one. We use WordNet (Fell- fined in the general database hold. baum, 1998) as our initial database, and we The method adopts an eliminative draw evidence from a domain specific corpus approach, based on incrementally about what synonymy relations hold in the pruning the original database. The domain. method is based on a preliminary Our task has obvious relations to word manual pruning phase and an algo- sense disambiguation (Sanderson, 1997) (Lea- rithm for automatically pruning the cock et al., 1998), since both tasks are based database. This method has been im- on identifying senses of ambiguous words in plemented and used for an Informa- a text. However, the two tasks are quite dis- tion Retrieval system in the aviation tinct. -
An Evaluation of Key-Value Stores in Scientific Applications
AN EVALUATION OF KEY-VALUE STORES IN SCIENTIFIC APPLICATIONS A Thesis Presented to the Faculty of the Department of Computer Science University of Houston In Partial Fulfillment of the Requirements for the Degree Master of Science By Sonia Shirwadkar May 2017 AN EVALUATION OF KEY-VALUE STORES IN SCIENTIFIC APPLICATIONS Sonia Shirwadkar APPROVED: Dr. Edgar Gabriel, Chairman Dept. of Computer Science, University of Houston Dr. Weidong Shi Dept. of Computer Science, University of Houston Dr. Dan Price Honors College, University of Houston Dean, College of Natural Sciences and Mathematics ii Acknowledgments \No one who achieves success does so without the help of others. The wise acknowledge this help with gratitude." - Alfred North Whitehead Although, I have a long way to go before I am wise, I would like to take this opportunity to express my deepest gratitude to all the people who have helped me in this journey. First and foremost, I would like to thank Dr. Gabriel for being a great advisor. I appreciate the time, effort and ideas that you have invested to make my graduate experience productive and stimulating. The joy and enthusiasm you have for research was contagious and motivational for me, even during tough times. You have been an inspiring teacher and mentor and I would like to thank you for the patience, kindness and humor that you have shown. Thank you for guiding me at every step and for the incredible understanding you showed when I came to you with my questions. It has indeed been a privilege working with you. I would like to thank Dr. -
An Approach to Deriving Global Authorizations in Federated Database Systems
5 An Approach To Deriving Global Authorizations in Federated Database Systems Silvana Castano Universita di Milano Dipartimento di Scienze dell'lnformazione, Universita di Milano Via Comelico 99/41, Milano, Italy. Email: castano @ds i. unimi. it Abstract Global authorizations in federated database systems can be derived from local authorizations exported by component databases. This paper addresses problems related to the development of techniques for the analysis of local authorizations and for the construction of global authorizations where semantic correspondences between subjects in different component databases are identified on the basis of authorization compatibility. Abstraction of compatible authorizations is discussed to semi-automatically derive global authorizations that are consistent with the local ones. Keywords Federated database systems, Discretionary access control, Authorization compati bility, Authorization abstraction. 1 INTRODUCTION A federated database system (or federation) is characterized by a number of com ponent databases (CDB) which share part of their data, while preserving their local autonomy. In particular, in the so-called tightly coupled systems [She90], a feder ation administrator (FDBA) is responsible for managing the federation and for defining a federated schema. A federated schema is an integrated description of all data exported by CDBs of the federation, obtained by resolving possible semantic conflicts among data descriptions [Bri94,Ham93,Sie91]. A basic security requirement of federated systems is that the autonomy of CDBs must be taken into account for access control [Mor92]. This means that global accesses to objects of a federated schema must be authorized also by the involved CDBs, according to their local security policies. Two levels of authorization can be distinguished: a global level, where global requests of federated users are evaluated P. -
Nosql – Factors Supporting the Adoption of Non-Relational Databases
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Trepo - Institutional Repository of Tampere University NoSQL – Factors Supporting the Adoption of Non-Relational Databases Olli Sutinen University of Tampere Department of Computer Sciences Computer Science M.Sc. thesis Supervisor: Marko Junkkari December 2010 University of Tampere Department of Computer Sciences Computer science Olli Sutinen: NoSQL – Factors Supporting the Adoption of Non-Relational Databases M.Sc. thesis November 2010 Relational databases have been around for decades and are still in use for general data storage needs. The web has created usage patterns for data storage and querying where current implementations of relational databases fit poorly. NoSQL is an umbrella term for various new data stores which emerged virtually simultaneously at the time when relational databases were the de facto standard for data storage. It is claimed that the new data stores address the changed needs better than the relational databases. The simple reason behind this phenomenon is the cost. If the systems are too slow or can't handle the load, the users will go to a competing site, and continue spending their time there watching 'wrong' advertisements. On the other hand, scaling relational databases is hard. It can be done and commercial RDBMS vendors have such systems available but it is out of reach of a startup because of the price tag included. This study reveals the reasons why many companies have found existing data storage solutions inadequate and developed new data stores. Keywords: databases, database scalability, data models, nosql Contents 1.