Isopeptide Linkage Between N-A-Monomethylalanine and Lysine

Total Page:16

File Type:pdf, Size:1020Kb

Isopeptide Linkage Between N-A-Monomethylalanine and Lysine Proc. Nati. Acad. Sci. USA Vol. 74, No. 11, pp. 4905-4908, November 1977 Biochemistry Isopeptide linkage between N-a-monomethylalanine and lysine in ribosomal protein S 1 from Escherichia coli (ribosome structure/protein modification/dansyl amino acids/solid-state peptide synthesis) ROBERT CHEN* AND URSULA CHEN-SCHMEISSER Max-Planck-Institut fur Molekulare Genetik, Abt. Wittmann, D-1000 Berlin-Dahlem, Germany Communicated by Stanford Moore, August 29, 1977 ABSTRACT Protein SI1 from the Escherichia coli ribosome peptides were digested with the enzyme (100:1, by weight) in has a unique NHrterminal structure not previously observed 0.2 M N-methylmorpholine, pH 8.1, for 1 hr at 37'. Amino acid among ribosomal proteins. Owing to the formation of an iso- analyses were performed under standard conditions (12) on a peptide bond between a secondary amino acid (N-a-mono- methylalanine) and the eamino group of the NH2-terminal ly- Durrum D500 amino acid analyzer. sine residue, a "branching point" is formed. Therefore, two Sequence Determinations. The NH2-terminal sequence of amino acids are seen when the NH2 terminus of the protein is the intact protein was determined by the automatic Edman determined. degradation process (13) (model PS 110, Socosi, Paris, France). The thiazolinone derivatives of the amino acids were converted Protein biosynthesis is a result of a number of highly coordi- to the phenylthiohydantoins in 1 M HCI at 800 for 10 min and nated events in which the proper codon-anticodon interaction extracted from the aqueous solution with ethyl acetate. They between mRNA and aminoacylated tRNAs guarantees the were identified by chromatography on silica gel thin-layer correct translation of the genetic message (reviewed in refs. 1 plates (HPTLC silica gel6o, 10 X 10, Merck, Darmstadt, GFR) and 2). This interaction is governed by several ribosomal in system I [chloroform/1-propanol/2-propanol, 98:1:1 (vol/ components, one of which is protein S1i from the Escherichia vol)] and in system II [dichloroethane/acetic acid, 6:1 (vol/vol)]. coli ribosome. This protein has been shown to have a strong In addition, they were hydrolyzed in HI to generate the free influence on the fidelity of translation (3). amino acids (14) and were then subjected to amino acid analysis. Recently the occurrence of an unusual modification, N-a- The refined micro dansyl-Edman technique (10) was used to monomethylation, of the NH2-terminal alanine in Sil was establish the sequences of the tryptic peptides. Micro polyamide reported (4). This residue was determined by mass spectrom- plates were photographed with Agfa-ortho film. etry, amino acid analysis, and chromatography in various sys- Synthesis of the Tripeptide L-Lys(eN-methyl-L-Ala)LAla. tems. In a search for similarly modified ribosomal proteins, The tripeptide was synthesized in solid phase attached to a N-a-monomethylation was also established for the NH2 termini chloromethyl resin (15). After the synthesis was completed the of proteins L16 (4, 5) and L33 (4, 6, 7). The NH2-terminal peptide was cleaved from the resin with HBr in trifluoroacetic residues of these proteins are completely methylated (4). N- acid. It was purified with the micro Dowex 50W-X7 column a-Monomethylation was not measured for protein Si 1 because system (11). Its homogeneity was judged by analytical peptide the Edman degradation process always indicated the presence maps (10), NH2 terminus determination (16) and amino acid of lysine in addition to the presence of N-a-monomethylalanine analysis (12). t-Butoxycarbonyl (Boc)-alanine and a-L-benzy- (NaMeAla). This suggested some "heterogeneity" in the pro- loxycarbonyl (Cbz)-eBoc-L-lysine were purchased from Serva tein. The experiments reported in this communication were (Heidelberg, GFR). Boc-NaMeAla was synthesized with t- designed to investigate this observation. butylazidoformate and was recrystallized from ethyl acetate/ hexane (17). MATERIALS AND METHODS Protein SlI used throughout these experiments was provided RESULTS by H. G. Wittmann. Its identity and purity were judged NHrTerminal Sequence of SlI. Determination of the NH2 by one-dimensional sodium dodecyl sulfate/gel electrophoresis terminus of protein SIl by the dansylation technique gave one (8) and two-dimensional polyacrylamide gel electrophoresis spot in the position of dansyl (Dns)-NaMeAla and a second spot (9). in the position of a- or eDns-lysine on the polyamide plate. This Preparation of Peptides. Protein Si1 was digested with second spot is always seen when proteins (or peptides) that trypsin (TPCK-trypsin, Merck, Darmstadt, GFR). The peptides contain lysine residues react with dansyl chloride. This is due were purified by peptide mapping on cellulose thin-layer plates to the reactivity of the e-amino group of lysine. Bis-Dns-lysine or by ion exchange chromatography on a Dowex 50W-X7 is seen when lysine occurs at the NH2 terminus of the protein micro column (10, 11). A more detailed report of the prepara- (or peptide). Therefore, it was concluded that the sample tion of the peptides will appear elsewhere. contained pure protein SIl and that the NH2-terminal residue Amino Acid Analyses. Hydrolyses of the peptides were was NaMeAla. performed in 6 M HCI in the presence of 0.02% 2-mqrcapto- This conclusion, however, conflicted with the data from the ethanol or by digestion with leucine aminopeptidase (Serva, Heidelberg, GFR). Amounts corresponding to 200 pmol of the Abbreviations: NaMeAla, N-a-monomethylalanine; Boc, t-butoxy- carbonyl; Cbz, benzyloxycarbonyl; Dns, dansyl (1-dimethylamino- The costs of publication of this article were defrayed in part by the naphthalene-5-sulfonyl); PhNCS, 3-phenyl-2-thiohydantoin; PhNHCS, payment of page charges. This article must therefore be hereby marked phenylthiocarbamyl. "advertisement" in accordance with 18 U. S. C. §1734 solely to indicate * Present address: Max-Planck-Institut ffir Biologie, Corrensstrasse 38, this fact. D-7400 Tubingen 1, Germany. 4905 Downloaded by guest on September 24, 2021 4906 Biochemistry: Chen and Chen-Schmeisser Proc. Natl. Acad. Sci. USA 74 (1977) Table 1. Amino acid composition of the NH2-terminal tryptic peptide of S11 1 NMA p Amino Standard amino Calibration with acid acid analysis Lys(E-N-MeAla)-Ala # S > 3* I NaMeAla + 1.10 A * A Ala 1.10 0.95 o K 6***t * t Ile 1.00 &.. Pro 0.95 Lys 1.01 1.00 I * * 9~~~~~~~R R R Arg 0.92 O A.- V.**ae..+A. STEP: 1 2 3 4 5 6 7 8 addition, it revealed that the second amino group of lysine FIG.....1. Automatic * Edman degradation of S11. The phenylthio- became accessible to dansyl chloride when the sample was hydantoin (PhNCS)*A*..-....derivatives of the amino acids released in every hydrolyzed before it was treated with the reagent. step of the analysis were identified on silica gel thin-layer plates. Standard PhNCS-amino acid mixtures were chromatographed par- Analysis with Leucine Aminopeptidase. Digestion with allel to them (18). Note that two amino acids are seen in every step. leucine aminopeptidase was used to determine whether one A = Ala; I = Ile; K = Lys; P = Pro; R = Arg; NMA = NaMeAla. amino group of the NH2-terminal lysine in Sli was blocked by alkylation, acylation, or glycosylation, because leucine automatic degradation of Sil in the sequenator (Fig. 1). In the aminopeptidase would not hydrolyze these residues from lysine. first step of the analysis, both NaMeAla and lysine were re- The NH2-terminal tryptic peptide, which contained a single leased from the protein. Two amino acids also were seen in each lysine residue, was treated with the enzyme. From the digest of the following steps, indicating that apparently two poly- an aliquot was dansylated and chromatographed on polyamide peptide chains were present in the sample. In addition, the data plates, which revealed that both bis-Dns-lysine and Dns- suggested, that the "two" chains were homologous, because an NaMeAla were present on the chromatogram. This result amino acid seen in one step of the analysis also occurred in the showed that alkylation, acylation, or glycosylation of the lysine next step. Hence, the difference between the "two" chains residue had to be excluded. seemed to be an additional amino acid at the NH2 terminus of Measurement of NaMeAla in the NH2-Terminal Tryptic one of them that induced a shift of the entire sequence. Peptide. No standard amino acid mixtures are available that Sequence of the NH2-Terminal Tryptic Peptide. To resolve contain NaMeAla. Therefore, the synthetic peptide L-Lys(E- the discrepancy between the dansylation results and the se- N-methyl-L-Ala)-L-Ala was used to calibrate the absorptivity quenator data, protein SlI was digested with trypsin. The of NaMeAla relative to equimolar amounts of lysine and ala- NH2-terminal tryptic peptide was isolated from the digest on nine. Amino acid analyses of both the synthetic peptide and the peptide maps. This peptide was sequenced by the micro dan- NH2-terminal tryptic peptide of Si 1 were conducted on a syl-Edman technique which gave Dns-NaMeAla and a- or Durrum D500 amino acid analyzer at the sensitivity of 2 OD, e-Dns-lysine in the first cycle (Fig. 2). Bis-Dns-lysine was not at which the standard error of the analysis is minimal. The data seen in the first step nor was lysine identified in any further step are given in Table 1. The molar ratio of NaMeAla to lysine and of the analysis. alanine was the same in both peptides, which showed that In order to investigate why a- or E-Dns-lysine was seen rather NaMeAla and lysine occurred in every molecule of the than bis-Dns-lysine in the first cycle, the NH2-terminal tryptic NH2-terminal tryptic peptide. The data confirmed that the peptide was submitted to a subtractive micro dansyl-Edman peptide was pure and that we were not dealing with a mixture technique.
Recommended publications
  • Prokaryotic Ubiquitin-Like Protein Remains Intrinsically Disordered When Covalently Attached to Proteasomal Target Proteins Jonas Barandun1,2, Fred F
    Barandun et al. BMC Structural Biology (2017) 17:1 DOI 10.1186/s12900-017-0072-1 RESEARCH ARTICLE Open Access Prokaryotic ubiquitin-like protein remains intrinsically disordered when covalently attached to proteasomal target proteins Jonas Barandun1,2, Fred F. Damberger1, Cyrille L. Delley1, Juerg Laederach1, Frédéric H. T. Allain1 and Eilika Weber-Ban1* Abstract Background: The post-translational modification pathway referred to as pupylation marks proteins for proteasomal degradation in Mycobacterium tuberculosis and other actinobacteria by covalently attaching the small protein Pup (prokaryotic ubiquitin-like protein) to target lysine residues. In contrast to the functionally analogous eukaryotic ubiquitin, Pup is intrinsically disordered in its free form. Its unfolded state allows Pup to adopt different structures upon interaction with different binding partners like the Pup ligase PafA and the proteasomal ATPase Mpa. While the disordered behavior of free Pup has been well characterized, it remained unknown whether Pup adopts a distinct structure when attached to a substrate. Results: Using a combination of NMR experiments and biochemical analysis we demonstrate that Pup remains unstructured when ligated to two well-established pupylation substrates targeted for proteasomal degradation in Mycobacterium tuberculosis, malonyl transacylase (FabD) and ketopantoyl hydroxylmethyltransferase (PanB). Isotopically labeled Pup was linked to FabD and PanB by in vitro pupylation to generate homogeneously pupylated substrates suitable for NMR analysis. The single target lysine of PanB was identified by a combination of mass spectroscopy and mutational analysis. Chemical shift comparison between Pup in its free form and ligated to substrate reveals intrinsic disorder of Pup in the conjugate. Conclusion: When linked to the proteasomal substrates FabD and PanB, Pup is unstructured and retains the ability to interact with its different binding partners.
    [Show full text]
  • Power to the Protein: Enhancing and Combining Activities Using the Spy Toolbox Cite This: DOI: 10.1039/D0sc01878c
    Chemical Science View Article Online MINIREVIEW View Journal Power to the protein: enhancing and combining activities using the Spy toolbox Cite this: DOI: 10.1039/d0sc01878c All publication charges for this article Anthony H. Keeble and Mark Howarth * have been paid for by the Royal Society of Chemistry Proteins span an extraordinary range of shapes, sizes and functionalities. Therefore generic approaches are needed to overcome this diversity and stream-line protein analysis or application. Here we review SpyTag technology, now used in hundreds of publications or patents, and its potential for detecting and controlling protein behaviour. SpyTag forms a spontaneous and irreversible isopeptide bond upon binding its protein partner SpyCatcher, where both parts are genetically-encoded. New variants of this pair allow reaction at a rate approaching the diffusion limit, while reversible versions allow purification of SpyTagged proteins or tuned dynamic interaction inside cells. Anchoring of SpyTag-linked proteins has been established to diverse nanoparticles or surfaces, including gold, graphene and the air/water interface. SpyTag/ SpyCatcher is mechanically stable, so is widely used for investigating protein folding and force sensitivity. A toolbox of scaffolds allows SpyTag-fusions to be assembled into defined multimers, from dimers to Creative Commons Attribution 3.0 Unported Licence. 180-mers, or unlimited 1D, 2D or 3D networks. Icosahedral multimers are being evaluated for vaccination against malaria, HIV and cancer. For enzymes, Spy technology has increased resilience, promoted substrate channelling, and assembled hydrogels for continuous flow biocatalysis. Combinatorial increase in functionality has been achieved through modular derivatisation of antibodies, Received 2nd April 2020 light-emitting diodes or viral vectors.
    [Show full text]
  • Development of Rapid, Homogeneous Assay for Investigating Isopeptide Bond Formation Using Fluorescence Polarization/ Depolarization Measurements
    BearWorks MSU Graduate Theses Summer 2018 Development of Rapid, Homogeneous Assay for Investigating Isopeptide Bond Formation Using Fluorescence Polarization/ Depolarization Measurements Samuel Patricc Kasson Missouri State University, [email protected] As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. Follow this and additional works at: https://bearworks.missouristate.edu/theses Part of the Analytical Chemistry Commons, Biochemistry Commons, and the Biotechnology Commons Recommended Citation Kasson, Samuel Patricc, "Development of Rapid, Homogeneous Assay for Investigating Isopeptide Bond Formation Using Fluorescence Polarization/Depolarization Measurements" (2018). MSU Graduate Theses. 3292. https://bearworks.missouristate.edu/theses/3292 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DEVELOPMENT OF RAPID, HOMOGENEOUS ASSAY FOR INVESTIGATING ISOPEPTIDE BOND
    [Show full text]
  • Transcriptional Regulation by Histone Ubiquitination and Deubiquitination
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press PERSPECTIVE Transcriptional regulation by histone ubiquitination and deubiquitination Yi Zhang1 Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA Ubiquitin (Ub) is a 76-amino acid protein that is ubiqui- The fact that histone ubiquitination occurs in the largely tously distributed and highly conserved throughout eu- monoubiquitinated form and is not linked to degrada- karyotic organisms. Whereas the extreme C-terminal tion, in combination with the lack of information regard- four amino acids are in a random coil, its N-terminal 72 ing the responsible enzymes, prevented us from under- amino acids have a tightly folded globular structure (Vi- standing the functional significance of this modification. jay-Kumar et al. 1987; Fig. 1A). Since its discovery ∼28 Recent identification of the E2 and E3 proteins involved years ago (Goldknopf et al. 1975), a variety of cellular in H2B ubiquitination (Robzyk et al. 2000; Hwang et al. processes including protein degradation, stress response, 2003; Wood et al. 2003a) and the discovery of cross-talk cell-cycle regulation, protein trafficking, endocytosis sig- between histone methylation and ubiquitination (Dover naling, and transcriptional regulation have been linked et al. 2002; Sun and Allis 2002) have set the stage for to this molecule (Pickart 2001). Ubiquitylation is pro- functional analysis of histone ubiquitination. In a timely posed to serve as a signaling module, and the informa- paper published in the previous issue of Genes & Devel- tion transmitted by this tag may depend on the nature of opment, Shelley Berger and colleagues (Henry et al.
    [Show full text]
  • Using the Spycatcher-Spytag and Related Systems for Labeling and Localizing Bacterial Proteins
    International Journal of Molecular Sciences Review Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins Daniel Hatlem , Thomas Trunk, Dirk Linke and Jack C. Leo * Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway; [email protected] (D.H.); [email protected] (T.T.); [email protected] (D.L.) * Correspondence: [email protected]; Tel.: +47-228-59027 Received: 2 April 2019; Accepted: 26 April 2019; Published: 30 April 2019 Abstract: The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase.
    [Show full text]
  • Peptide Tag Forming a Rapid Covalent Bond to a Protein, Through
    Peptide tag forming a rapid covalent bond to a PNAS PLUS protein, through engineering a bacterial adhesin Bijan Zakeria,1, Jacob O. Fierera,1, Emrah Celikb, Emily C. Chittocka, Ulrich Schwarz-Linekc, Vincent T. Moyb, and Mark Howartha,2 aDepartment of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom; bDepartment of Physiology and Biophysics, University of Miami, Miller School of Medicine, P.O. Box 016430, Miami, FL 33101-6430; and cBiomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom Edited by James A. Wells, University of California, San Francisco, CA, and approved January 17, 2012 (received for review September 21, 2011) Protein interactions with peptides generally have low thermo- a peptide representing the C-terminal β-strand containing the re- dynamic and mechanical stability. Streptococcus pyogenes fibro- active Asp and a protein partner derived from the rest of the pro- nectin-binding protein FbaB contains a domain with a spontaneous tein would allow the two partners to reconstitute and undergo isopeptide bond between Lys and Asp. By splitting this domain covalent reaction (Fig. 1C). This reaction occurred initially over and rational engineering of the fragments, we obtained a peptide hours for each species present at 10 μM, but by rational optimi- (SpyTag) which formed an amide bond to its protein partner (Spy- zation of the S. pyogenes (Spy) protein partner (termed SpyCatch- Catcher) in minutes. Reaction occurred in high yield simply upon er) (SI Appendix, Fig. S1) and the peptide tag (termed SpyTag)(SI mixing and amidst diverse conditions of pH, temperature, and Appendix, Fig.
    [Show full text]
  • Proteolytic Cleavage—Mechanisms, Function
    Review Cite This: Chem. Rev. 2018, 118, 1137−1168 pubs.acs.org/CR Proteolytic CleavageMechanisms, Function, and “Omic” Approaches for a Near-Ubiquitous Posttranslational Modification Theo Klein,†,⊥ Ulrich Eckhard,†,§ Antoine Dufour,†,¶ Nestor Solis,† and Christopher M. Overall*,†,‡ † ‡ Life Sciences Institute, Department of Oral Biological and Medical Sciences, and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada ABSTRACT: Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein’s structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissuefrom 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C- termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms
    [Show full text]
  • The Pupylation Machinery Is Involved in Iron Homeostasis by Targeting the Iron Storage Protein Ferritin
    The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin Andreas Küberla, Tino Polena,1, and Michael Botta,1 aIBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, 52425 Juelich, Germany Edited by Gisela Storz, National Institutes of Health, Bethesda, MD, and approved March 11, 2016 (received for review July 23, 2015) The balance of sufficient iron supply and avoidance of iron toxicity broad spectrum of functional categories, which might be explained by iron homeostasis is a prerequisite for cellular metabolism and by a general recycling function fulfilled by pupylation. In this view, growth. Here we provide evidence that, in Actinobacteria, pupyla- protein degradation mediated by pupylation is assumed to recycle tion plays a crucial role in this process. Pupylation is a posttransla- amino acids under several stress conditions in Mycobacterium tional modification in which the prokaryotic ubiquitin-like protein smegmatis (20). Although pupylation was shown to target proteins Pup is covalently attached to a lysine residue in target proteins, thus to proteasome-mediated degradation, not all pupylated proteins resembling ubiquitination in eukaryotes. Pupylated proteins are are subject to this fate (15, 21). Furthermore, the activity of the recognized and unfolded by a dedicated AAA+ ATPase (Mycobacte- mycobacterial ATPase Mpa itself was shown to be reversibly reg- rium proteasomal AAA+ ATPase; ATPase forming ring-shaped com- ulated by pupylation, which renders Mpa functionally inactive (22). plexes). In Mycobacteria, degradation of pupylated proteins by the In view of these results, the investigation of pupylation in protea- proteasome serves as a protection mechanism against several stress some-lacking Actinobacteria promises new insights into its physi- conditions.
    [Show full text]
  • Molecular Strategy for Blocking Isopeptide Bond Formation in Nascent Pilin Proteins
    Molecular strategy for blocking isopeptide bond formation in nascent pilin proteins Jaime Andrés Rivas-Pardoa,1, Carmen L. Badillaa, Rafael Tapia-Rojoa, Álvaro Alonso-Caballeroa, and Julio M. Fernándeza,1 aDepartment of Biological Sciences, Columbia University, NY 10027 Edited by Yale E. Goldman, Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA, and approved August 3, 2018 (received for review May 4, 2018) Bacteria anchor to their host cells through their adhesive pili, (β-strand1) and N303 (β-strand11) (23). This intramolecular co- which must resist the large mechanical stresses induced by the valent bond accounts for the mechanical rigidity of the protein, as host as it attempts to dislodge the pathogens. The pili of gram- the carboxyl terminus of the C-terminal domain cross-links to the positive bacteria are constructed as a single polypeptide made of adjacent pilin subunit at K161, which leaves the majority of the hundreds of pilin repeats, which contain intramolecular isopeptide N-terminal domain outside of the force pathway (23, 24) (Fig. 1A bonds strategically located in the structure to prevent their and SI Appendix,Fig.S1). Hence, the isopeptide bond is re- unfolding under force, protecting the pilus from degradation by sponsible for the resistance of bacterial adhesion to me- chanical shocks, since mechanically labile pilin proteins that extant proteases and oxygen radicals. Here, we demonstrate the – design of a short peptide that blocks the formation of the isopeptide extend under force are vulnerable to degradative processes (30 33). In this work, we demonstrate the design of short peptides bond present in the pilin Spy0128 from the human pathogen Strep- that, by blocking the formation of the critical intramolecular tococcus pyogenes, resulting in mechanically labile pilin domains.
    [Show full text]
  • Multisite Protein Modification and Intramolecular Signaling
    Oncogene (2005) 24, 1653–1662 & 2005 Nature Publishing Group All rights reserved 0950-9232/05 $30.00 www.nature.com/onc REVIEW Multisite protein modification and intramolecular signaling Xiang-Jiao Yang*,1 1Molecular Oncology Group, Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada H3A 1A1 Post-translational modification is a major mechanism by into proper structuraland functionalstates. Many other which protein function is regulated in eukaryotes.Instead covalent modifications are transient and play important of single-site action, many proteins such as histones, p53, roles in regulating protein function. Instead of single-site RNA polymerase II, tubulin, Cdc25C and tyrosine kinases modification, various proteins are modified at multiple are modified at multiple sites by modifications like sites, a phenomenon referred to as multisite modifica- phosphorylation, acetylation, methylation, ubiquitination, tion. The multiplicity of modification sites on a protein sumoylation and citrullination.Multisite modification on often correlates with its biological importance and the a protein constitutes a complex regulatory program that complexity of the corresponding organism. Here, I resembles a dynamic ‘molecular barcode’ and transduces utilize selected proteins, including histones, RNA molecular information to and from signaling pathways. polymerase II, p53, Cdc25C and PDGF receptor-b,to This program imparts effects through ‘loss-of-function’ illustrate the complexity of multisite modification and and ‘gain-of-function’ mechanisms.Among
    [Show full text]
  • Isopeptide Linkage Between Nonhistone and Histone 2A Polypeptides of Chromosomal Conjugate-Protein A24 (Chromatin/Amino Acid Sequence/Tryptic Peptides) IRA L
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 3, pp. 864-868, March 1977 Biochemistry Isopeptide linkage between nonhistone and histone 2A polypeptides of chromosomal conjugate-protein A24 (chromatin/amino acid sequence/tryptic peptides) IRA L. GOLDKNOPF AND HARRIS BUSCH Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030 Communicated by Stanford Moore, November 29,1976 ABSTRACT Chromosomal protein A24 has a unique The present study indicates that protein A24 has two amino structure inasmuch as it contains histone 2A and a nonhistone termini and one carboxyl terminus. In addition, the amino acid polypeptide the sequence of which has been partially deter- mined. Comparative analysis of the ninhydrin-insensitive sequence of the branched tryptic peptide 17' indicates that the amino-terminal tryptic peptides of protein A24 and histone 2A eamino group of lysine 119 of the histone 2A portion of protein and a quantitative analysis of their carboxyl-terminal amino A24 is linked to glycine by an isopeptide bond. Therefore, a acid indicated that protein A24 has two amino termini and one branched structure is proposed for protein A24. carboxyl terminus. The amino acid sequence analysis of tryptic peptide 17' of protein A24: MATERIALS AND METHODS H2N-CH4N-CHNH Protein Isolation. Protein A24 and histone 2A, isolated from (Gly) Y)(lY(I H240 calf thymus tissue as described (3, 7), were obtained in highly HN-CH-C;-Thr-Gkj-Ser-H6*is-Lys purified form, as determined by two-dimensional polyacryl- (Lys 119) amide gel electrophoresis (8). showed it contains tryptic peptide 17 of histone 2A, Lys-Thr- Preparation of Tryptic Peptides.
    [Show full text]
  • Linkage Novel Type of Antigen with an Isopeptide Peptide Splicing in The
    Peptide Splicing in the Proteasome Creates a Novel Type of Antigen with an Isopeptide Linkage This information is current as Celia R. Berkers, Annemieke de Jong, Karianne G. of October 1, 2021. Schuurman, Carsten Linnemann, Jan A. J. Geenevasen, Ton N. M. Schumacher, Boris Rodenko and Huib Ovaa J Immunol 2015; 195:4075-4084; Prepublished online 23 September 2015; doi: 10.4049/jimmunol.1402454 http://www.jimmunol.org/content/195/9/4075 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/09/23/jimmunol.140245 Material 4.DCSupplemental http://www.jimmunol.org/ References This article cites 35 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/195/9/4075.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 1, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]