Space Station Control Moment Gyroscope Lessons Learned
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Juno Telecommunications
The cover The cover is an artist’s conception of Juno in orbit around Jupiter.1 The photovoltaic panels are extended and pointed within a few degrees of the Sun while the high-gain antenna is pointed at the Earth. 1 The picture is titled Juno Mission to Jupiter. See http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA13087 for the cover art and an accompanying mission overview. DESCANSO Design and Performance Summary Series Article 16 Juno Telecommunications Ryan Mukai David Hansen Anthony Mittskus Jim Taylor Monika Danos Jet Propulsion Laboratory California Institute of Technology Pasadena, California National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California October 2012 This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. DESCANSO DESIGN AND PERFORMANCE SUMMARY SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Published Articles in This Series Article 1—“Mars Global -
THE ATTITUDE CONTROL and DETERMINATION SYSTEMS of the SAS-A Satellite
THE ATTITUDE CONTROL and DETERMINATION SYSTEMS of the SAS-A SATElliTE F. F. Mobley, A high-speed wheel inside the satellite provides the basic attitude sta B. E. Tossman, bilization for SAS-A. Wobbling of the spin axis is removed by an G. H. Fountain ultra-sensitive nutation damper which uses a copper vane pendulum on a taut-band suspension to dissipate energy by eddy-currents. The spin axis can be oriented anywhere in space as required for the X-ray ex periment by a magnetic control system operated by commands from the ground station at Quito, Ecuador. Magnetic torquing is also used to maintain the satellite spin rate at 1/ 12 revolution per minute. These systems are outgrowths of APL developments for previous satellites, chosen for simplicity and maximum expectation of satisfactory performance in orbit. The in-orbit performance has been essentially flawless. Introduction HE ATTITUDE CONTROL SYSTEM is used to a simple and reliable open-loop system, using orient SAS-A so that the X-ray detectors can commands from the ground. This is very appealing Tscan the regions of the celestial sphere in an or since the weight and power limitations on the derly and efficient manner to detect and measure SAS-A satellite do not permit an elaborate closed new X-ray sources. The two X-ray collimators loop control system. are mounted perpendicular to the satellite spin In addition to detecting and analyzing new (Z) axis. As the satellite rotates slowly about its X-ray sources, the experimenter is interested in Z axis, the detectors scan a 5-degree-wide great correlating X-ray sources with known visible stars, circle path in the celestial sphere. -
Utilising Accelerometer and Gyroscope in Smartphone to Detect Incidents on a Test Track for Cars
Utilising accelerometer and gyroscope in smartphone to detect incidents on a test track for cars Carl-Johan Holst Data- och systemvetenskap, kandidat 2017 Luleå tekniska universitet Institutionen för system- och rymdteknik LULEÅ UNIVERSITY OF TECHNOLOGY BACHELOR THESIS Utilising accelerometer and gyroscope in smartphone to detect incidents on a test track for cars Author: Examiner: Carl-Johan HOLST Patrik HOLMLUND [email protected] [email protected] Supervisor: Jörgen STENBERG-ÖFJÄLL [email protected] Computer and space technology Campus Skellefteå June 4, 2017 ii Abstract Utilising accelerometer and gyroscope in smartphone to detect incidents on a test track for cars Every smartphone today includes an accelerometer. An accelerometer works by de- tecting acceleration affecting the device, meaning it can be used to identify incidents such as collisions at a relatively high speed where large spikes of acceleration often occur. A gyroscope on the other hand is not as common as the accelerometer but it does exists in most newer phones. Gyroscopes can detect rotations around an arbitrary axis and as such can be used to detect critical rotations. This thesis work will present an algorithm for utilising the accelerometer and gy- roscope in a smartphone to detect incidents occurring on a test track for cars. Sammanfattning Utilising accelerometer and gyroscope in smartphone to detect incidents on a test track for cars Alla smarta telefoner innehåller idag en accelerometer. En accelerometer analyserar acceleration som påverkar enheten, vilket innebär att den kan användas för att de- tektera incidenter så som kollisioner vid relativt höga hastigheter där stora spikar av acceleration vanligtvis påträffas. -
A Tuning Fork Gyroscope with a Polygon-Shaped Vibration Beam
micromachines Article A Tuning Fork Gyroscope with a Polygon-Shaped Vibration Beam Qiang Xu, Zhanqiang Hou *, Yunbin Kuang, Tongqiao Miao, Fenlan Ou, Ming Zhuo, Dingbang Xiao and Xuezhong Wu * College of Intelligence Science and Engineering, National University of Defense Technology, Changsha 410073, China; [email protected] (Q.X.); [email protected] (Y.K.); [email protected] (T.M.); [email protected] (F.O.); [email protected] (M.Z.); [email protected] (D.X.) * Correspondence: [email protected] (Z.H.); [email protected] (X.W.) Received: 22 October 2019; Accepted: 18 November 2019; Published: 25 November 2019 Abstract: In this paper, a tuning fork gyroscope with a polygon-shaped vibration beam is proposed. The vibration structure of the gyroscope consists of a polygon-shaped vibration beam, two supporting beams, and four vibration masts. The spindle azimuth of the vibration beam is critical for performance improvement. As the spindle azimuth increases, the proposed vibration structure generates more driving amplitude and reduces the initial capacitance gap, so as to improve the signal-to-noise ratio (SNR) of the gyroscope. However, after taking the driving amplitude and the driving voltage into consideration comprehensively, the optimized spindle azimuth of the vibration beam is designed in an appropriate range. Then, both wet etching and dry etching processes are applied to its manufacture. After that, the fabricated gyroscope is packaged in a vacuum ceramic tube after bonding. Combining automatic gain control and weak capacitance detection technology, the closed-loop control circuit of the drive mode is implemented, and high precision output circuit is achieved for the gyroscope. -
Juno Spacecraft Description
Juno Spacecraft Description By Bill Kurth 2012-06-01 Juno Spacecraft (ID=JNO) Description The majority of the text in this file was extracted from the Juno Mission Plan Document, S. Stephens, 29 March 2012. [JPL D-35556] Overview For most Juno experiments, data were collected by instruments on the spacecraft then relayed via the orbiter telemetry system to stations of the NASA Deep Space Network (DSN). Radio Science required the DSN for its data acquisition on the ground. The following sections provide an overview, first of the orbiter, then the science instruments, and finally the DSN ground system. Juno launched on 5 August 2011. The spacecraft uses a deltaV-EGA trajectory consisting of a two-part deep space maneuver on 30 August and 14 September 2012 followed by an Earth gravity assist on 9 October 2013 at an altitude of 559 km. Jupiter arrival is on 5 July 2016 using two 53.5-day capture orbits prior to commencing operations for a 1.3-(Earth) year-long prime mission comprising 32 high inclination, high eccentricity orbits of Jupiter. The orbit is polar (90 degree inclination) with a periapsis altitude of 4200-8000 km and a semi-major axis of 23.4 RJ (Jovian radius) giving an orbital period of 13.965 days. The primary science is acquired for approximately 6 hours centered on each periapsis although fields and particles data are acquired at low rates for the remaining apoapsis portion of each orbit. Juno is a spin-stabilized spacecraft equipped for 8 diverse science investigations plus a camera included for education and public outreach. -
19.1 Attitude Determination and Control Systems Scott R. Starin
19.1 Attitude Determination and Control Systems Scott R. Starin, NASA Goddard Space Flight Center John Eterno, Southwest Research Institute In the year 1900, Galveston, Texas, was a bustling direct hit as Ike came ashore. Almost 200 people in the community of approximately 40,000 people. The Caribbean and the United States lost their lives; a former capital of the Republic of Texas remained a tragedy to be sure, but far less deadly than the 1900 trade center for the state and was one of the largest storm. This time, people were prepared, having cotton ports in the United States. On September 8 of received excellent warning from the GOES satellite that year, however, a powerful hurricane struck network. The Geostationary Operational Environmental Galveston island, tearing the Weather Bureau wind Satellites have been a continuous monitor of the gauge away as the winds exceeded 100 mph and world’s weather since 1975, and they have since been bringing a storm surge that flooded the entire city. The joined by other Earth-observing satellites. This weather worst natural disaster in United States’ history—even surveillance to which so many now owe their lives is today—the hurricane caused the deaths of between possible in part because of the ability to point 6000 and 8000 people. Critical in the events that led to accurately and steadily at the Earth below. The such a terrible loss of life was the lack of precise importance of accurately pointing spacecraft to our knowledge of the strength of the storm before it hit. daily lives is pervasive, yet somehow escapes the notice of most people. -
+ New Horizons
Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16 -
Evaluation of Gyroscope-Embedded Mobile Phones
Evaluation of Gyroscope-embedded Mobile Phones Christopher Barthold, Kalyan Pathapati Subbu and Ram Dantu∗ Department of Computer Science and Engineering University of North Texas, Denton, Texas 76201 Email: [email protected], [email protected], [email protected] ∗ Also currently visiting professor in Massachusetts Institute of Technology. Abstract—Many mobile phone applications such as pedometers accurately determine the phone’s orientation. Similar mobile and navigation systems rely on orientation sensors that most applications cannot be used in real-life situations without smartphones are now equipped with. Unfortunately, these sensors knowing the device’s orientation to virtually orient it. rely on measured accelerometer and magnetic field data to determine the orientation. Thus, accelerations upon the phone The two principle problems we face are, 1) the varying which arise from everyday use alter orientation information. orientation of the device when placed in user pockets, hand- Similarly, external magnetic interferences from indoor/urban bags or held in different positions, and 2) existence of user settings affect the heading calculation, resulting in inaccurate acceleration and external magnetic fields. A potential solution directional information. The inability to determine the orientation to these problems could be the use of gyroscopes, which are during everyday use inhibits many potential mobile applications development. devices that can detect orientation change. These sensors are In this work, we exploit the newly built-in gyroscope in known to be immune to external accelerations and magnetic the Nexus S smartphone to address the interference problems interferences. MEMS based gyroscopes have already found associated with the orientation sensor. We first perform drift error their way in handhelds, tablets, digital cameras to name a few. -
Cubesat Attitude Control System Based on Embedded Magnetorquers in Photovoltaic Panels Mario Castro Santiago Junio De 2018
Trabajo Fin de Grado en F´ısica Cubesat Attitude Control System based on embedded magnetorquers in photovoltaic panels Mario Castro Santiago Junio de 2018 Tutor: Andres´ Mar´ıa Roldan´ Aranda Departamento de Electr´onicay Tecnolog´ıade Computadores Universidad de Granada Abstract The use of magnetic actuation in order to stabilize and control a small 1U Cubesat is studied and analyzed, as a required step for the devel- opment of the future university satellite GranaSAT-I. This thesis gather crucial theoretical contents concerning the attitude control of a satellite in an orbit below 500 km, where the International Space Station is able to deploy nano-satellites. Moreover, these contents have been imple- mented in a MATLAB simulator. One stabilizing control law has been succesfully tested with this tool, and two different control algorithms have shown partial success when a 3-axis control has been required. In parallel, an autonomous Cubesat prototype has been manufactured in the GranaSAT Laboratory. The stabilizing algorithm has been imple- mented on the onboard computer. Telemetry data during tests reflect an adequate performance of the prototype. Resumen Se estudia el uso de actuadores magneticos´ con el objetivo de estabi- lizar y controlar un pequeno˜ Cubesat 1U, como paso necesario para el desarrollo futuro satelite´ universitario GranaSAT-I. Esta tesis recaba contenidos teoricos´ fundamentales respecto al control de orientacion´ de un satelite´ en una orbita´ por debajo de 500 km, donde la Estacion´ Espacial Internacional es capaz de lanzar nano-satelites.´ Ademas,´ esta teor´ıa ha sido implementada en un simulador en MATLAB. Con esta herramienta, se ha probado con exito´ un algoritmo de estabilizacion,´ y dos algoritmos de control han mostrado un exito´ parcial cuando un control en los tres ejes ha sido necesario. -
Space Sector Brochure
SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners. -
Evaluation of MEMS Accelerometer and Gyroscope for Orientation Tracking Nutrunner Functionality
EXAMENSARBETE INOM ELEKTROTEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2017 Evaluation of MEMS accelerometer and gyroscope for orientation tracking nutrunner functionality Utvärdering av MEMS accelerometer och gyroskop för rörelseavläsning av skruvdragare ERIK GRAHN KTH SKOLAN FÖR TEKNIK OCH HÄLSA Evaluation of MEMS accelerometer and gyroscope for orientation tracking nutrunner functionality Utvärdering av MEMS accelerometer och gyroskop för rörelseavläsning av skruvdragare Erik Grahn Examensarbete inom Elektroteknik, Grundnivå, 15 hp Handledare på KTH: Torgny Forsberg Examinator: Thomas Lind TRITA-STH 2017:115 KTH Skolan för Teknik och Hälsa 141 57 Huddinge, Sverige Abstract In the production industry, quality control is of importance. Even though today's tools provide a lot of functionality and safety to help the operators in their job, the operators still is responsible for the final quality of the parts. Today the nutrunners manufactured by Atlas Copco use their driver to detect the tightening angle. There- fore the operator can influence the tightening by turning the tool clockwise or counterclockwise during a tightening and quality cannot be assured that the bolt is tightened with a certain torque angle. The function of orientation tracking was de- sired to be evaluated for the Tensor STB angle and STB pistol tools manufactured by Atlas Copco. To be able to study the orientation of a nutrunner, practical exper- iments were introduced where an IMU sensor was fixed on a battery powered nutrunner. Sensor fusion in the form of a complementary filter was evaluated. The result states that the accelerometer could not be used to estimate the angular dis- placement of tightening due to vibration and gimbal lock and therefore a sensor fusion is not possible. -
I a COMPARISON STUDY on CONTROL MOMENT GYROSCOPE ARRAYS and STEERING LAWS CHITIIRAN KRISHNA MOORTHY a THESIS SUBMITTED to the F
A COMPARISON STUDY ON CONTROL MOMENT GYROSCOPE ARRAYS AND STEERING LAWS CHITIIRAN KRISHNA MOORTHY A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN EARTH AND SPACE SCIENCE YORK UNIVERSITY TORONTO, ONTARIO DECEMBER 2019 ©CHITIIRAN KRISHNA MOORTHY, 2019 i Abstract Current reaction wheels and magnetorquers for microsatellite are limited by low slew rate and heavily depends on orbital parameters for coverage area. Control moment gyroscope (CMG) clusters offer an alternative solution for high slew rates and rapid retargeting. Though CMGs are often used in large space missions, their use in microsatellites is limited due to the stringent mass budget. Most literature reports only on pyramid configuration, and there are no definite cross comparison studies between various CMG clusters and steering laws. In this research, a generic tool in Matlab and Simulink is developed to further understand CMG configurations and steering laws for a microsat mission. Various steering laws necessary for mitigating singularities in CMG clusters are compared in two distinct missions. The simulation results were evaluated based on the pointing accuracy, platform jitter, and pointing stability achieved by the spacecraft for each combination of CMG clusters, steering laws and trajectories. The simulation results demonstrate that the pyramid cluster is marginally better than the rooftop cluster in pointing accuracy. The comparison of steering laws shows that, counterintuitively, Singularity Robust steering law, which passes through singularities, outperforms both Moore-Penrose and Local Gradient methods for almost all evaluation criteria for the two missions it was tested on.