SAS/STAT® 13.2 User’S Guide the REG Procedure This Document Is an Individual Chapter from SAS/STAT® 13.2 User’S Guide

Total Page:16

File Type:pdf, Size:1020Kb

SAS/STAT® 13.2 User’S Guide the REG Procedure This Document Is an Individual Chapter from SAS/STAT® 13.2 User’S Guide SAS/STAT® 13.2 User’s Guide The REG Procedure This document is an individual chapter from SAS/STAT® 13.2 User’s Guide. The correct bibliographic citation for the complete manual is as follows: SAS Institute Inc. 2014. SAS/STAT® 13.2 User’s Guide. Cary, NC: SAS Institute Inc. Copyright © 2014, SAS Institute Inc., Cary, NC, USA All rights reserved. Produced in the United States of America. For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc. For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication. The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others’ rights is appreciated. U.S. Government License Rights; Restricted Rights: The Software and its documentation is commercial computer software developed at private expense and is provided with RESTRICTED RIGHTS to the United States Government. Use, duplication or disclosure of the Software by the United States Government is subject to the license terms of this Agreement pursuant to, as applicable, FAR 12.212, DFAR 227.7202-1(a), DFAR 227.7202-3(a) and DFAR 227.7202-4 and, to the extent required under U.S. federal law, the minimum restricted rights as set out in FAR 52.227-19 (DEC 2007). If FAR 52.227-19 is applicable, this provision serves as notice under clause (c) thereof and no other notice is required to be affixed to the Software or documentation. The Government’s rights in Software and documentation shall be only those set forth in this Agreement. SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513. August 2014 SAS provides a complete selection of books and electronic products to help customers use SAS® software to its fullest potential. For more information about our offerings, visit support.sas.com/bookstore or call 1-800-727-3228. SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. Gain Greater Insight into Your SAS® Software with SAS Books. Discover all that you need on your journey to knowledge and empowerment. support.sas.com/bookstore for additional books and resources. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies. © 2013 SAS Institute Inc. All rights reserved. S107969US.0613 Chapter 85 The REG Procedure Contents Overview: REG Procedure................................... 6978 Getting Started: REG Procedure................................ 6980 Simple Linear Regression................................ 6980 Polynomial Regression.................................. 6984 Using PROC REG Interactively............................. 6995 Syntax: REG Procedure.................................... 6996 PROC REG Statement.................................. 6998 ADD Statement ..................................... 7012 BY Statement ...................................... 7012 CODE Statement..................................... 7012 DELETE Statement ................................... 7013 FREQ Statement..................................... 7013 ID Statement....................................... 7014 MODEL Statement.................................... 7014 MTEST Statement.................................... 7025 OUTPUT Statement................................... 7027 PRINT Statement .................................... 7028 REFIT Statement..................................... 7029 RESTRICT Statement.................................. 7030 REWEIGHT Statement ................................. 7031 STORE Statement.................................... 7034 TEST Statement..................................... 7035 VAR Statement...................................... 7036 WEIGHT Statement................................... 7036 Details: REG Procedure.................................... 7036 Missing Values...................................... 7036 Input Data Sets...................................... 7037 Output Data Sets..................................... 7040 Interactive Analysis ................................... 7045 Model-Selection Methods................................ 7049 Criteria Used in Model-Selection Methods . 7052 Limitations in Model-Selection Methods . 7052 Parameter Estimates and Associated Statistics . 7053 Predicted and Residual Values.............................. 7055 Models of Less Than Full Rank............................. 7059 Collinearity Diagnostics................................. 7060 6978 F Chapter 85: The REG Procedure Model Fit and Diagnostic Statistics........................... 7062 Influence Statistics.................................... 7064 Reweighting Observations in an Analysis . 7072 Testing for Heteroscedasticity.............................. 7078 Testing for Lack of Fit.................................. 7079 Multivariate Tests .................................... 7080 Autocorrelation in Time Series Data........................... 7083 Computations for Ridge Regression and IPC Analysis . 7084 Construction of Q-Q and P-P Plots ........................... 7085 Computational Methods................................. 7085 Computer Resources in Regression Analysis . 7085 Displayed Output..................................... 7086 Plot Options Superseded by ODS Graphics . 7088 ODS Table Names.................................... 7104 ODS Graphics...................................... 7106 Examples: REG Procedure................................... 7112 Example 85.1: Modeling Salaries of Major League Baseball Players . 7112 Example 85.2: Aerobic Fitness Prediction . 7126 Example 85.3: Predicting Weight by Height and Age . 7142 Example 85.4: Regression with Quantitative and Qualitative Variables . 7146 Example 85.5: Ridge Regression for Acetylene Data . 7152 Example 85.6: Chemical Reaction Response . 7156 References........................................... 7158 Overview: REG Procedure The REG procedure is one of many regression procedures in the SAS System. It is a general-purpose procedure for regression, while other SAS regression procedures provide more specialized applications. Other SAS/STAT procedures that perform at least one type of regression analysis are the CATMOD, GEN- MOD, GLM, LOGISTIC, MIXED, NLIN, ORTHOREG, PROBIT, RSREG, and TRANSREG procedures. SAS/ETS procedures are specialized for applications in time series or simultaneous systems. These other SAS/STAT regression procedures are summarized in Chapter 4, “Introduction to Regression Procedures,” which also contains an overview of regression techniques and defines many of the statistics computed by PROC REG and other regression procedures. Overview: REG Procedure F 6979 PROC REG provides the following capabilities: • multiple MODEL statements • nine model-selection methods • interactive changes both in the model and the data used to fit the model • linear equality restrictions on parameters • tests of linear hypotheses and multivariate hypotheses • collinearity diagnostics • predicted values, residuals, studentized residuals, confidence limits, and influence statistics • correlation or crossproduct input • requested statistics available for output through output data sets • ODS Graphics. For more information, see the section “ODS Graphics” on page 7106. Nine model-selection methods are available in PROC REG. In the simplest method, PROC REG fits the complete model that you specify. The other eight methods involve various ways of including or excluding variables from the model. You specify these methods with the SELECTION= option in the MODEL statement. The methods are identified in the following list and are explained in detail in the section “Model-Selection Methods” on page 7049. NONE no model selection. This is the default. The complete model specified in the MODEL statement is fit to the data. FORWARD forward selection. This method starts with no variables in the model and adds variables. BACKWARD backward elimination. This method starts with all variables in the model and deletes variables. STEPWISE stepwise regression. This is similar to the FORWARD method except that variables already in the model do not necessarily stay there. MAXR forward selection to fit the best one-variable model, the best two-variable model, and so on. Variables are switched so that R square is maximized. MINR similar to the MAXR method, except that variables are switched so that the increase in R square from adding a variable to the model is minimized. RSQUARE finds a specified number of models with the highest R square in a range of model sizes. ADJRSQ finds a specified number of models with the highest adjusted R square in a range of model sizes. CP finds a specified number of models with the lowest Cp in a range of model sizes. 6980 F Chapter 85: The REG Procedure Getting Started: REG Procedure Simple Linear Regression
Recommended publications
  • Power Comparisons of Five Most Commonly Used Autocorrelation Tests
    Pak.j.stat.oper.res. Vol.16 No. 1 2020 pp119-130 DOI: http://dx.doi.org/10.18187/pjsor.v16i1.2691 Pakistan Journal of Statistics and Operation Research Power Comparisons of Five Most Commonly Used Autocorrelation Tests Stanislaus S. Uyanto School of Economics and Business, Atma Jaya Catholic University of Indonesia, [email protected] Abstract In regression analysis, autocorrelation of the error terms violates the ordinary least squares assumption that the error terms are uncorrelated. The consequence is that the estimates of coefficients and their standard errors will be wrong if the autocorrelation is ignored. There are many tests for autocorrelation, we want to know which test is more powerful. We use Monte Carlo methods to compare the power of five most commonly used tests for autocorrelation, namely Durbin-Watson, Breusch-Godfrey, Box–Pierce, Ljung Box, and Runs tests in two different linear regression models. The results indicate the Durbin-Watson test performs better in the regression model without lagged dependent variable, although the advantage over the other tests reduce with increasing autocorrelation and sample sizes. For the model with lagged dependent variable, the Breusch-Godfrey test is generally superior to the other tests. Key Words: Correlated error terms; Ordinary least squares assumption; Residuals; Regression diagnostic; Lagged dependent variable. Mathematical Subject Classification: 62J05; 62J20. 1. Introduction An important assumption of the classical linear regression model states that there is no autocorrelation in the error terms. Autocorrelation of the error terms violates the ordinary least squares assumption that the error terms are uncorrelated, meaning that the Gauss Markov theorem (Plackett, 1949, 1950; Greene, 2018) does not apply, and that ordinary least squares estimators are no longer the best linear unbiased estimators.
    [Show full text]
  • Chapter 4: Model Adequacy Checking
    Chapter 4: Model Adequacy Checking In this chapter, we discuss some introductory aspect of model adequacy checking, including: • Residual Analysis, • Residual plots, • Detection and treatment of outliers, • The PRESS statistic • Testing for lack of fit. The major assumptions that we have made in regression analysis are: • The relationship between the response Y and the regressors is linear, at least approximately. • The error term ε has zero mean. • The error term ε has constant varianceσ 2 . • The errors are uncorrelated. • The errors are normally distributed. Assumptions 4 and 5 together imply that the errors are independent. Recall that assumption 5 is required for hypothesis testing and interval estimation. Residual Analysis: The residuals , , , have the following important properties: e1 e2 L en (a) The mean of is 0. ei (b) The estimate of population variance computed from the n residuals is: n n 2 2 ∑()ei−e ∑ei ) 2 = i=1 = i=1 = SS Re s = σ n − p n − p n − p MS Re s (c) Since the sum of is zero, they are not independent. However, if the number of ei residuals ( n ) is large relative to the number of parameters ( p ), the dependency effect can be ignored in an analysis of residuals. Standardized Residual: The quantity = ei ,i = 1,2, , n , is called d i L MS Re s standardized residual. The standardized residuals have mean zero and approximately unit variance. A large standardized residual ( > 3 ) potentially indicates an outlier. d i Recall that e = (I − H )Y = (I − H )(X β + ε )= (I − H )ε Therefore, / Var()e = var[]()I − H ε = (I − H )var(ε )(I −H ) = σ 2 ()I − H .
    [Show full text]
  • Multiple Regression
    ICPSR Blalock Lectures, 2003 Bootstrap Resampling Robert Stine Lecture 4 Multiple Regression Review from Lecture 3 Review questions from syllabus - Questions about underlying theory - Math and notation handout from first class Review resampling in simple regression - Regression diagnostics - Smoothing methods (modern regr) Methods of resampling – which to use? Today Multiple regression - Leverage, influence, and diagnostic plots - Collinearity Resampling in multiple regression - Ratios of coefficients - Differences of two coefficients - Robust regression Yes! More t-shirts! Bootstrap Resampling Multiple Regression Lecture 4 ICPSR 2003 2 Locating a Maximum Polynomial regression Why bootstrap in least squares regression? Question What amount of preparation (in hours) maximizes the average test score? Quadmax.dat Constructed data for this example Results of fitting a quadratic Scatterplot with added quadratic fit (or smooth) 0 5 10 15 20 HOURS Least squares regression of the model Y = a + b X + c X2 + e gives the estimates a = 136 b= 89.2 c = –4.60 So, where’s the maximum and what’s its CI? Bootstrap Resampling Multiple Regression Lecture 4 ICPSR 2003 3 Inference for maximum Position of the peak The maximum occurs where the derivative of the fit is zero. Write the fit as f(x) = a + b x + c x2 and then take the derivative, f’(x) = b + 2cx Solving f’(x*) = 0 for x* gives b x* = – 2c ≈ –89.2/(2)(–4.6)= 9.7 Questions - What is the standard error of x*? - What is the 95% confidence interval? - Is the estimate biased? Bootstrap Resampling Multiple Regression Lecture 4 ICPSR 2003 4 Bootstrap Results for Max Location Standard error and confidence intervals (B=2000) Standard error is slightly smaller with fixed resampling (no surprise)… Observation resampling SE* = 0.185 Fixed resampling SE* = 0.174 Both 95% intervals are [9.4, 10] Bootstrap distribution The kernel looks pretty normal.
    [Show full text]
  • Outlier Detection and Influence Diagnostics in Network Meta- Analysis
    Outlier detection and influence diagnostics in network meta- analysis Hisashi Noma, PhD* Department of Data Science, The Institute of Statistical Mathematics, Tokyo, Japan ORCID: http://orcid.org/0000-0002-2520-9949 Masahiko Gosho, PhD Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan Ryota Ishii, MS Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan Koji Oba, PhD Interfaculty Initiative in Information Studies, Graduate School of Interdisciplinary Information Studies, The University of Tokyo, Tokyo, Japan Toshi A. Furukawa, MD, PhD Departments of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan *Corresponding author: Hisashi Noma Department of Data Science, The Institute of Statistical Mathematics 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan TEL: +81-50-5533-8440 e-mail: [email protected] Abstract Network meta-analysis has been gaining prominence as an evidence synthesis method that enables the comprehensive synthesis and simultaneous comparison of multiple treatments. In many network meta-analyses, some of the constituent studies may have markedly different characteristics from the others, and may be influential enough to change the overall results. The inclusion of these “outlying” studies might lead to biases, yielding misleading results. In this article, we propose effective methods for detecting outlying and influential studies in a frequentist framework. In particular, we propose suitable influence measures for network meta-analysis models that involve missing outcomes and adjust the degree of freedoms appropriately. We propose three influential measures by a leave-one-trial-out cross-validation scheme: (1) comparison-specific studentized residual, (2) relative change measure for covariance matrix of the comparative effectiveness parameters, (3) relative change measure for heterogeneity covariance matrix.
    [Show full text]
  • Residuals, Part II
    Biostatistics 650 Mon, November 5 2001 Residuals, Part II Key terms External Studentization Outliers Added Variable Plot — Partial Regression Plot Partial Residual Plot — Component Plus Residual Plot Key ideas/results ¢ 1. An external estimate of ¡ comes from refitting the model without observation . Amazingly, it has an easy formula: £ ¦!¦ ¦ £¥¤§¦©¨ "# 2. Externally Studentized Residuals $ ¦ ¦©¨ ¦!¦)( £¥¤§¦&% ' Ordinary residuals standardized with £*¤§¦ . Also known as R-Student. 3. Residual Taxonomy Names Definition Distribution ¦!¦ ¦+¨-,¥¦ ,0¦ 1 Ordinary ¡ 5 /. &243 ¦768¤§¦©¨ ¦ ¦!¦ 1 ¦!¦ PRESS ¡ &243 9' 5 $ Studentized ¦©¨ ¦ £ ¦!¦ ¤0> % = Internally Studentized : ;<; $ $ Externally Studentized ¦+¨ ¦ £?¤§¦ ¦!¦ ¤0>¤A@ % R-Student = 4. Outliers are unusually large observations, due to an unmodeled shift or an (unmodeled) increase in variance. 5. Outliers are not necessarily bad points; they simply are not consistent with your model. They may posses valuable information about the inadequacies of your model. 1 PRESS Residuals & Studentized Residuals Recall that the PRESS residual has a easy computation form ¦ ¦©¨ PRESS ¦!¦ ( ¦!¦ It’s easy to show that this has variance ¡ , and hence a standardized PRESS residual is 9 ¦ ¦ ¦!¦ ¦ PRESS ¨ ¨ ¨ ¦ : £ ¦!¦ £ ¦!¦ £ ¦ ¦ % % % ' When we standardize a PRESS residual we get the studentized residual! This is very informa- ,¥¦ ¦ tive. We understand the PRESS residual to be the residual at ¦ if we had omitted from the 3 model. However, after adjusting for it’s variance, we get the same thing as a studentized residual. Hence the standardized residual can be interpreted as a standardized PRESS residual. Internal vs External Studentization ,*¦ ¦ The PRESS residuals remove the impact of point ¦ on the fit at . But the studentized 3 ¢ ¦ ¨ ¦ £?% ¦!¦ £ residual : can be corrupted by point by way of ; a large outlier will inflate the residual mean square, and hence £ .
    [Show full text]
  • Chapter 39 Fit Analyses
    Chapter 39 Fit Analyses Chapter Table of Contents STATISTICAL MODELS ............................568 LINEAR MODELS ...............................569 GENERALIZED LINEAR MODELS .....................572 The Exponential Family of Distributions ....................572 LinkFunction..................................573 The Likelihood Function and Maximum-Likelihood Estimation . .....574 ScaleParameter.................................576 Goodness of Fit .................................576 Quasi-Likelihood Functions ..........................577 NONPARAMETRIC SMOOTHERS ......................580 SmootherDegreesofFreedom.........................581 SmootherGeneralizedCrossValidation....................582 VARIABLES ...................................583 METHOD .....................................585 OUTPUT .....................................587 TABLES ......................................590 ModelInformation...............................590 ModelEquation.................................590 X’X Matrix . .................................591 SummaryofFitforLinearModels.......................592 SummaryofFitforGeneralizedLinearModels................593 AnalysisofVarianceforLinearModels....................594 AnalysisofDevianceforGeneralizedLinearModels.............595 TypeITests...................................595 TypeIIITests..................................597 ParameterEstimatesforLinearModels....................599 ParameterEstimatesforGeneralizedLinearModels..............601 C.I.forParameters...............................602 Collinearity
    [Show full text]
  • Regression Diagnostics and Model Selection
    Regression diagnostics and model selection MS-C2128 Prediction and Time Series Analysis Fall term 2020 MS-C2128 Prediction and Time Series Analysis Regression diagnostics and model selection Week 2: Regression diagnostics and model selection 1 Regression diagnostics 2 Model selection MS-C2128 Prediction and Time Series Analysis Regression diagnostics and model selection Content 1 Regression diagnostics 2 Model selection MS-C2128 Prediction and Time Series Analysis Regression diagnostics and model selection Regression diagnostics Questions: Does the model describe the dependence between the response variable and the explanatory variables well 1 contextually? 2 statistically? A good model describes the dependencies as well as possible. Assessment of the goodness of a regression model is called regression diagnostics. Regression diagnostics tools: graphics diagnostic statistics diagnostic tests MS-C2128 Prediction and Time Series Analysis Regression diagnostics and model selection Regression model selection In regression modeling, one has to select 1 the response variable(s) and the explanatory variables, 2 the functional form and the parameters of the model, 3 and the assumptions on the residuals. Remark The first two points are related to defining the model part and the last point is related to the residuals. These points are not independent of each other! MS-C2128 Prediction and Time Series Analysis Regression diagnostics and model selection Problems in defining the model part (i) Linear model is applied even though the dependence between the response variable and the explanatory variables is non-linear. (ii) Too many or too few explanatory variables are chosen. (iii) It is assumed that the model parameters are constants even though the assumption does not hold.
    [Show full text]
  • Linear Regression Diagnostics*
    LIBRARY OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY WORKING PAPER ALFRED P. SLOAN SCHOOL OF MANAGEMENT LINEAR REGRESSION DIAGNOSTICS* Soy E. Welsch and Edwin Kuh Massachusetts Institute of Technology and NBER Computer Research Center WP 923-77 April 1977 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 50 MEMORIAL DRIVE CAMBRIDGE, MASSACHUSETTS 02139 ^ou to divest? access to expanded sub-regional markets possibility of royalty payments to parent access to local long term capital advantages given to a SAICA (i.e., reduce LINEAR REGRESSION DIAGNOSTICS^ Roy E. Welsch and Edwin Kuh Massachusetts Institute of Technology and NBER Computer Research Center WP 923-77 April 1977 *Me are indebted to the National Science Foundation for supporting this research under Grant SOC76-143II to the NBER Computer Research Center. - , ABSTFACT This paper atxeT.pts to provide the user of linear multiple regression with a batter;/ of iiagncstic tools to determine which, if any, data points have high leverage or irifluerice on the estimation process and how these pcssidly iiscrepar.t iata points -differ from the patterns set by the majority of the data. Tr.e point of viev; taken is that when diagnostics indicate the presence of anomolous data, the choice is open as to whether these data are in fact -unus-ual and helprul, or possioly hannful and thus in need of modifica- tions or deletion. The methodology/ developed depends on differences, derivatives, and decompositions of basic re:gressicn statistics. Th.ere is also a discussion of hov; these tecr-niques can be used with robust and ridge estimators, r^i exarripls is given showing the use of diagnostic methods in the estimation of a cross cou.ntr>' savir.gs rate model.
    [Show full text]
  • Studentized Residuals
    CHECKING ASSUMPTIONS/CONDITIONS AND FIXING PROBLEMS Recall, linear model is: YXiii01 where we assume: E{ε} = 0, Variance of the “errors” = σ2{ε} = σ2, same value at any X Sometimes assume errors are normally distributed (“normal errors” model). ˆ After we fit the model using data, the residuals eYYiii will be useful for checking the assumptions and conditions. But what is a large residual? If discussing GPA, 0.5 could be large but if discussion SAT scores (possible scores of 200 to 800), 0.5 would be tiny. Need to create equivalent of a z-score. Recall estimate of σ is sMSE * e i e i “Semi-studentized” residuals (p. 103) MSE Note these are called standardized residuals in R. Later, will learn another version, which R calls studentized residuals. Assumptions in the Normal Linear Regression Model A1: There is a linear relationship between X and Y. A2: The error terms (and thus the Y’s at each X) have constant variance. A3: The error terms are independent. A4: The error terms (and thus the Y’s at each X) are normally distributed. Note: In practice, we are looking for a fairly symmetric distribution with no major outliers. Other things to check (Questions to ask): Q5: Are there any major outliers in the data (X, or combination of (X,Y))? Q6: Are there other possible predictors that should be included in the model? Applet for illustrating the effect of outliers on the regression line and correlation: http://illuminations.nctm.org/LessonDetail.aspx?ID=L455 Useful Plots for Checking Assumptions and Answering These Questions Reminders: ˆ Residual
    [Show full text]
  • Outlier Detection Based on Robust Parameter Estimates
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 23 (2017) pp.13429-13434 © Research India Publications. http://www.ripublication.com Outlier Detection based on Robust Parameter Estimates Nor Azlida Aleng1, Nyi Nyi Naing2, Norizan Mohamed3 and Kasypi Mokhtar4 1,3 School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia. 2 Institute for Community (Health) Development (i-CODE), Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Malaysia. 4 School of Maritime Business and Management, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia. Orcid; 0000-0003-1111-3388 Abstract evidence that the outliers can lead to model misspecification, incorrect analysis result and can make all estimation procedures Outliers can influence the analysis of data in various different meaningless, (Rousseeuw and Leroy, 1987; Alma, 2011; ways. The outliers can lead to model misspecification, incorrect Zimmerman, 1994, 1995, 1998). Outliers in the response analysis results and can make all estimation procedures variable represent model failure. Outliers in the regressor meaningless. In regression analysis, ordinary least square variable values are extreme in X-space are called leverage estimation is most frequently used for estimation of the points. parameters in the model. Unfortunately, this estimator is sensitive to outliers. Thus, in this paper we proposed some Rousseeuw and Lorey (1987) defined that outliers in three statistics for detection of outliers based on robust estimation, types; 1) vertical outliers, 2) bad leverage point, 3) good namely least trimmed squares (LTS). A simulation study was leverage point. Vertical outlier is an observation that has performed to prove that the alternative approach gives a better influence on the error term of y-dimension (response) but is results than OLS estimation to identify outliers.
    [Show full text]
  • Econometrics Streamlined, Applied and E-Aware
    Econometrics Streamlined, Applied and e-Aware Francis X. Diebold University of Pennsylvania Edition 2014 Version Thursday 31st July, 2014 Econometrics Econometrics Streamlined, Applied and e-Aware Francis X. Diebold Copyright c 2013 onward, by Francis X. Diebold. This work is licensed under the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License. (Briefly: I retain copyright, but you can use, copy and distribute non-commercially, so long as you give me attribution and do not modify.) To view a copy of the license, visit http://creativecommons.org/licenses/by-nc-nd/4.0. To my undergraduates, who continually surprise and inspire me Brief Table of Contents About the Author xxi About the Cover xxiii Guide to e-Features xxv Acknowledgments xxvii Preface xxxv 1 Introduction to Econometrics1 2 Graphical Analysis of Economic Data 11 3 Sample Moments and Their Sampling Distributions 27 4 Regression 41 5 Indicator Variables in Cross Sections and Time Series 73 6 Non-Normality, Non-Linearity, and More 105 7 Heteroskedasticity in Cross-Section Regression 143 8 Serial Correlation in Time-Series Regression 151 9 Heteroskedasticity in Time-Series Regression 207 10 Endogeneity 241 11 Vector Autoregression 243 ix x BRIEF TABLE OF CONTENTS 12 Nonstationarity 279 13 Big Data: Selection, Shrinkage and More 317 I Appendices 325 A Construction of the Wage Datasets 327 B Some Popular Books Worth Reading 331 Detailed Table of Contents About the Author xxi About the Cover xxiii Guide to e-Features xxv Acknowledgments xxvii Preface xxxv 1 Introduction to Econometrics1 1.1 Welcome..............................1 1.1.1 Who Uses Econometrics?.................1 1.1.2 What Distinguishes Econometrics?...........3 1.2 Types of Recorded Economic Data...............3 1.3 Online Information and Data..................4 1.4 Software..............................5 1.5 Tips on How to use this book..................7 1.6 Exercises, Problems and Complements.............8 1.7 Historical and Computational Notes..............
    [Show full text]
  • Cal Analysis of Residual Scores and Outlier Detection in Bivariate Least Squares Regression Analysis
    DOCUMENT RESUME ED 395 949 TM 025 016 AUTHOR Serdahl, Eric TITLE An Introduction to Grapl- cal Analysis of Residual Scores and Outlier Detection in Bivariate Least Squares Regression Analysis. PUB DATE Jan 96 NOTE 29p.; Paper presented at the Annual Meeting of the Southwest Educational Research Association (New Orleans, LA, January 1996). PUB TYPE Reports Evaluative/Feasibility (142) Speeches/Conference Papers (150) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Graphs; *Identification; *Least Squares Statistics; *Regression (Statistics) ;Research Methodology IDENTIFIERS *Outliers; *Residual Scores; Statistical Package for the Social Sciences PC ABSTRACT The information that is gained through various analyses of the residual scores yielded by the least squares regression model is explored. In fact, the most widely used methods for detecting data that do not fit this model are based on an analysis of residual scores. First, graphical methods of residual analysis are discussed, followed by a review of several quantitative approaches. Only the more widely used approaches are discussed. Example data sets are analyzed through the use of the Statistical Package for the Social Sciences (personal computer version) to illustrate the various strengths and weaknesses of these approaches and to demonstrate the necessity of using a variety of techniques in combination to detect outliers. The underlying premise for using these techniques is that the researcher needs to make sure that conclusions based on the data are not solely dependent on one or two extreme observations. Once an outlier is detected, the researcher must examine the data point's source of aberration. (Contains 3. figures, 5 tables, and 14 references.) (SLD) * Reproductions supplied by EDRS are the best that can be made from the original document.
    [Show full text]